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ABSTRACT 
Environmental consideration provides news trends in wireless communication network 

known as green communication. The main object of green communication is to save as much 

as possible the energy consumption of the communication system. In this research study, We 

have investigated the green distributed nonlinear state estimation problem in wireless sensor 

networks (WSNs).which will be seamlessly integrated with the forthcoming 5G 

communication system’s distributed signal reconstruction algorithm is developed by 

employing compressive sensing and consensus filter to solve sparse signal reconstruction 

issue in WSNs with energy efficiate considered. In particular, the pseudo-measurement (PM) 

technology is introduced into the Kalman filter(CKF),and a sparsity constraint is imposed on 

the nonlinear estimation CKF.inorder to develop a distributed reconstruction algorithm to 

fuse the random linear measurement from the nodes in WSNs,the PM embedded CKF is 

formulated into the information form, and then the derived information filter is combined 

with consensus filter, while the square-root version is further developed to improve the 

performance and strengthen power saving capability. The simulation result demonstrate that 

the signal can be reconstructed with much fewer nodes in decentralized manner and all the 

nodes can reach a consensus, while providing some attractive benefits to the green 5G 

communication system 
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CHAPTER ONE 

INTRODUCTION 

This chapter provides a first introduction to the WSNs, including architecture, specific 

characteristics and applications. 

1.0 BACKGROUND OF THE STUDY 

1.0.1. Wireless sensor Network 

The well-known IEEE 802.11 family of standards was introduced in 1997 and is the 

most common wireless networking technology for mobile systems. It uses different frequency 

bands, for example, the 2.4-GHz band is used by IEEE 802.11b and IEEE 802.11g, while the 

IEEE 802.11a protocol uses the 5-GHz frequency band. IEEE 802.11 was frequently used in 

early wireless sensor networks and can still be found in current networks when bandwidth 

demands are high (e.g., for multimedia sensors). However, the high-energy overhead of IEEE 

802.11 based networks makes this standard unsuitable for low-power sensor networks. 

Typical data rate requirements in sensor networks are comparable to the bandwidths provided 

by dial-up modems, therefore the data rates provided by IEEE 802.11 are typically much 

higher than needed. This has led to the development of a variety of protocols that better 

satisfy the networks’ need for low power consumption and low data rates. For example, the 

IEEE 802.15.4 protocol has been designed specifically for short range communications in 

low-power sensor networks and is supported by most academic and commercial sensor 

nodes. When the transmission ranges of the radios of all sensor nodes are large enough and 

the sensors can transmit their data directly to the base station, they can form a star topology. 

In this topology, each sensor node communicates directly with the base station using a single 

hop. However, sensor networks often cover large geographic areas and radio transmission 

power should be kept at a minimum in order to conserve energy; consequently, multi-hop 

communication is the more common case for sensor networks. In this mesh topology, sensor 

nodes must not only capture and disseminate their own data, but also serve as relays for other 
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sensor nodes, that is, they must collaborate to propagate sensor data towards the base station. 

This routing problem, that is, the task of finding a multi-hop path from a sensor node to the 

base station, is one of the most important challenges and has received immense attention 

from the research community. When a node serves as a relay for multiple routes, it often has 

the opportunity to analyze and pre-process sensor data in the network, which can lead to the 

elimination of redundant information or aggregation of data that may be smaller than the 

original data. 

1.0.1. History of wireless sensor networks 

The military has been a driving force behind the development of wireless sensor 

networks. For example, in 1978, the Defense Advanced Research Projects Agency (DARPA) 

organized the Distributed Sensor Nets Workshop (DAR 1978), focusing on sensor network 

research challenges such as networking technologies, signal processing techniques, and 

distributed algorithms. DARPA also operated the Distributed Sensor Networks (DSN) 

program in the early 1980s, which was then followed by the Sensor Information Technology 

(SensIT) program. 

In collaboration with the Rockwell Science Center, the University of California at Los 

Angeles proposed the concept of Wireless Integrated Network Sensors or WINS. One 

outcome of the WINS project was the Low Power Wireless Integrated Micro sensor (LWIM), 

produced in 1996. This smart system was based on a CMOS chip, integrating multiple 

sensors, interface circuits, digital signal processing circuits, wireless radio, and 

microcontroller onto a single chip. The Smart Dust project at the University of California at 

Berkeley focused on the design of extremely small sensor nodes called motes. The goal of 

this project was to demonstrate that a complete sensor system can be integrated into tiny 

devices, possibly the size of a grain of sand or even a dust particle. The Pico Radio project by 

the Berkeley Wireless Research Center (BWRC) focuses on the development of low-power 
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sensor devices, whose power consumption is so small that they can power themselves from 

energy sources of the operating environment, such as solar or vibrational energy. The MIT 

μAMPS (micro- Adaptive Multidomain Power-aware Sensors) project also focuses on low-

power hardware and software components for sensor nodes, including the use of 

microcontrollers capable of dynamic voltage scaling and techniques to restructure data 

processing algorithms to reduce power requirements at the software level. 

1.0.3. Background of sensor network: 

Wireless sensor network(WSN) is a collection of micro-electromechanical system, sensor 

technology, embedded computing technology, information processing technology, modern 

network and wireless communication technology and digital electronics in the integration of a 

new generation of task oriented distributed network. 

Sensor nodes offer a powerful combination of distributed sensing, computing and 

communication. The ever-increasing capabilities of these tiny sensor nodes, which include 

sensing, data processing, and communicating, enable the realization of WSNs based on the 

collaborative effort of a number of other sensor nodes. They enable a wide range of 

applications and, at the same time, offer numerous challenges due to their peculiarities, 

primarily the stringent energy constraints to which sensing nodes are typically subjected. The 

failure of any one node can change the entire system. In idle mode, the nodes consume almost 

the same amount of energy as in active mode. While in sleep mode, the nodes shutdown the 

radio to save the energy. Energy constraints end up creating computational and storage 

limitations that lead to a new set of architectural issues. In many cases (e.g. surveillance 

applications), it is undesirable to change the batteries that are depleted or of energy 

As illustrated in Figure 1.1, each sensor node is consisting of five main components; a 

microcontroller unit, a transceiver unit, a memory unit, a power unit and a sensor unit. Each 

one of these components is determinant in designing a WSN for deployment. The 
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microcontroller unit is in charge of the different tasks, data processing and the control of the 

other components in the node. It is the main controller of the wireless sensor node, through 

which every other component is managed. The controller unit may consist of an on-board 

memory or may be associated with a small storage unit integrated into the embedded board. It 

manages the procedures that enable the sensor node to perform sensing operations, run 

associated algorithms, and collaborate with the other nodes through wireless communication. 

Through the transceiver unit a sensor node performs its communication with other nodes and 

other parts of the WSN. It is the most power consumption unit. The memory unit is for 

temporal storage of the sensed data and can be RAM, ROM and their other memory types 

(SDRAM, SRAM, EPROM, etc.), flash or even external storage devices such as USB. 

 

Figure 1.1 Components of a node of a WSN. 

The power unit, which is one of the critical components, is for node energy supply. Power 

can be stored in batteries (most common) rechargeable or not or in capacitors. For extra 

power supply and recharge, there can be used natural sources such as solar power in forms of 

photovoltaic panels and cells, wind power with turbines, kinetic energy from water, etc.Last 

but not least is the sensor unit, which is the main component of a wireless sensor node that 

distinguishes it from any other embedded system with communication capabilities. It may 

generally include several sensor units, which provide information gathering capabilities from 

the physical world. Each sensor unit is responsible for gathering information of a certain type, 

such as temperature, humidity, or light, and is usually composed of two subunits: a sensor 

and an analog-to-digital converter (ADC). The analog signals produced by the sensor based 
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on the observed phenomenon are converted to digital signals by the ADC, and then fed into 

the processing unit. 

In WSNs, the sensor nodes have the dual functionality of being both data originators 

and data routers. Hence, communication is performed for two reasons: 

• Source function: Each sensor node’s primary role is to gather data from the environment 

through the various sensors. The data generated from sensing the environment need to be 

processed and transmitted to nearby sensor nodes for multi-hop delivery to the sink. 

• Router function: In addition to originating data, each sensor node is responsible for relaying 

the information transmitted by its neighbors. The low-power communication techniques in 

WSNs limit the communication range of a node. In a large network, multi-hop 

communication is required so that nodes relay the information sent by their neighbors to the 

data collector, i.e., the sink. Accordingly, the sensor node is responsible for receiving the data 

sent by its neighbors and forwarding these data to one of its neighbors according to the 

routing decisions. 

1.0.4. Future 5G Communication. 

Device-to-device (D2D) communications is seen as new paradigm that will be implemented 

in the next generations of mobile networks to provide high performance in wireless network, 

improving coverage, provide spectral efficiency, high data rates and offer new peer-to-peer 

services with QoS guarantees. Direct communication will improve spectrum efficiency, 

overall system throughput, and energy efficiency, and decrease the delay between devices. It 

will enable new peer-to-peer and location-based applications and services. However the 

energy demand for IoT will increase dramatically in the near future considering the 

widespread interest and adoption of various organization, which will lead to higher carbon 

footprint and other environmental issues. 
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1.0.5. Transmitter receiver’s concept 

For actual communication, both a transmitter and a receiver are required in a sensor node. 

The essential task is to convert a bit stream coming from a microcontroller (or a sequence of 

bytes or frames) and convert them to and from radio waves.  

The transmitter/receiver (TX/RX) pair operates at a frequency of 434 MHZ. A radio 

frequency (RF) transmitter receives a serial data and transmits it wirelessly through RF 

through its antenna connected. The transmitted data is received by an RF receiver operating 

at the same frequency as that of a transmitter. The encoder is used for encoding parallel data 

for transmissions while the reception is decoded by a decoder Most current energy 

minimization models focus on sending and receiving data (Wang et al., 2006a), while other 

parameters are neglected. In (Heinzelman et al., 2000) and (Heinzelman et al., 2002), the 

power consumption model focused on the cost of sending and receiving data and deduced the 

upper limit of the energy efficiency of single hop distance. This approach considers an 

intermediate node between source and destination so that the retransmission will save the 

energy. Other approaches evaluate the energy efficiency of wireless sensor networks by using 

the power consumption model mentioned in (Heinzelman et al., 2000) and (Heinzelman et 

al., 2002).To consume less energy, it is important to minimize the time and energy to switch 

between different modes and transmit and receive states (Raghunathan et al., 2002). 

Furthermore, a low-power listening approach may operate at the physical layer, in which the 

basic idea is to periodically turn on the receiver to sample the incoming data. This duty-cycle 

approach reduces the idle listening overhead in the network (Halkes et al., 2005). Moreover, 

the energy consumption of the radio channel for sending and receiving data is equal; 

consequently, energy efficient MAC protocols have to maximize the sleep time of sensors 

(Raghunathan et al., 2002). Due to real-time monitoring and interaction with different parts of 

a sensing node, the operating System (OS) is probably the best place to optimize and manage 

energy consumption of a WSN at the node level. Perhaps one of the best known techniques at 



7 
 

the OS kernel level for minimizing energy consumption in the anode is processing unit 

scheduling by Dynamic Voltage-Frequency Scaling (DVFS). This technique allocates CPU 

time to tasks and manipulates the CPU power states (Sravan et al., 2007). In other words, 

tasks are executed at different frequencies, where lower frequencies mean less power 

consumption, and the CPU is moved to the lowest power state when there is no task to 

execute. 

A sensor consumes a large amount of energy during data transmission through three 

major activities: transmission, reception, and being idle. One study (Langendoen., 2003) 

showed that the ratio of power consumption in a processor (including CPU, memory) 

compared to the radio for the sensor nodes alters from 1:12.5 when both processor and radio 

are in sleep mode, to 1:4.76 when both are in active mode. As the largest energy consumer in 

a sensor, radio should play an important role in managing energy consumption and extending 

sensor lifetime.  

1.0.6. Various Clustering Parameters  

Some important parameters with regard to the whole clustering procedure in WSNs are:  

• Nodes types and roles: In heterogeneous environments, the CHs are assumed to be equipped 

with significantly more computation and communication resources than others. In 

homogeneous environments, all nodes have the same capabilities and just a subset of the 

deployed sensors is designated as CHs.  

• Multiple levels: In several published approaches the concept of a multi-level cluster 

hierarchy is introduced to achieve even better energy distribution and total energy 

consumption (instead of using only one cluster level). The improvements offered by multi-

level clustering are to be further studied, especially when we have very large networks and 

inter-CH communication efficiency is of high importance. 
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1.1. PROBLEM STATEMENT. 

Energy Consumption is one of the most fundamental and crucial factor determining the 

success of the deployment of sensors and wireless sensor networks (WSNs) due to many 

severe constraints, such as the size of the sensors, the unavailability of power source and 

inaccessibility of the sensor devices once they are deployed.  Efforts have been made to 

minimize the energy consumption of wireless sensor networks and lengthen their useful 

lifetime using various approaches at different levels. Some approaches aim to minimize the 

energy consumption of the sensors itself at its operating levels (Min et al.,2001).some aim to 

minimize the energy spent in the input/output operation at the data transmission levels 

(Alzoubi et al,2002) and others target the formulation of sensors network in term of their 

topology and related routing mechanism (shah and Rabaey,2002).in addition to the 

minimization efforts, some approaches have tried to replenish the energy capacity of the 

sensors by building into their components and mechanism for harvesting additional energy 

from available energy sources within their environment such as solar, thermal or wind power 

source (Raghanathan and chon 2006) another approach is to scan systematically through the 

level of OSI network reference model and minimize energy consumption(Joaque et al 2007). 

The sensor nodes are deployed in a distributed ad hoc manner to cooperate with each 

other to perform their task, by seamlessly integrating the WSNs, 5G will touch many 

scenarios in the future, such industrial automation, smart cities etc, however, state estimation, 

or signal reconstruction is a cornerstone in the aforementioned scenario. The major 

requirements that apply to most sensor network applications (Rabaey et al., 2000, H.Edgar 

and Callaway, 2004, Akyildiz et al., 2002b, Pottie and Kaiser, 2000): is Lifetime, it is 

desirable to prolong the lifetime of the network. Limited available energy makes the node 

lifespan a tremendous drawback of the wireless node technologies. Moreover, this limited 

energy may influence the robustness and/or reliability of the monitoring and/or control 

application built on top of the WSN 
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In this study a novel distributed state estimation algorithm to reduce the energy 

consumption is developed by looking into a compressive sensing technique (CS).which will 

improve energy efficiency by reducing the energy consumption of the WSNs and will bring 

green communication WSN system. 

1.2. MAIN OBJECTIVE 

Develop a stable distributed filtering algorithm for reconstructing the sparse signal in the 

discrete-time nonlinear stochastic system which utilizes advantages of compressive sensing 

and the square root decomposition technique to improve energy efficiency.  

1.3. SPECIFIC OBJECTIVES. 

1. Investigate Algorithms and distributed nonlinear state estimation problems in WSNs. 

2. Develop algorithm for energy efficiate WSN’s. 

3. Test and validate the algorithm. 

1.4. RESEARCH QUESTION. 

1. What Algorithms and distributed non linear state estimation problem Exist? 

2. Can this energy efficiate algorithm be for WSNs? 

3. Can this algorithm be tested and validated? 

1.5. SIGNIFICANCE OF THE STUDY 

The ongoing concerns about environment and global warming, pose more challenges in 

meeting the increasing demand for deployment of wireless communication networks. The 

green communication (GC) has become a new trend in wireless communication network 

design and operation.  

The intersection of the irredeemable trends namely escalating energy cost, and 

accelerated rise in communication usage, creates an urgent need to address the development 

of energy-efficient and environmentally-friendly use of the ICT facilities, for example 

Wireless Communication is the largest factor contributing to the wireless industry- 
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environmental impact with the emission from the telecommunication business sector 

estimated at between 0.5% and 1% of the whole world carbon footprint. Globally, electricity 

consumption by the ICT sector in 2012 was estimated to be roughly 900Million MWh, or 

4.6% of the world’s overall electricity consumption (Heddeghen et al.2014) .This includes 

electricity consumption by Data centers, Telecommunication and limited end user 

consumption. 

1.6. MOTIVATION OF THE STUDY 

The main object of green communication is to save as much as possible the energy 

consumption of the communication system. The ongoing concern about environmental and 

global warming, pose more challenge in meeting the increasing demand for deployment of 

wireless communication Network. 

Most of the energy is consumed during the sensing data processing, data storage, and 

communication phases. Hence reducing the number of measurements by each sensor, means 

reduction in the data dimensionality of the mentioned phase, this will improve energy 

efficiency by reducing the energy consumption of the WSNs and will bring green practices to 

the 5G communication system. 

1.7. SCOPE OF THE STUDY 

From the perspective of 5G,a distributed nonlinear state estimation algorithm for WSN’s is 

propose in this study that utilizes advantages of compressive sensing and the square-root 

decomposition technique to improve energy efficiacy.By embedding the pseudo-

measurement technology into the cubature Kalman filter and corresponding information filter 

I will derive algorithm and its square-root version by using the QR decomposition. The 

distributed algorithm is developed by means of high-pass consensus filter. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0. INTRODUCTIONS 

The infrastructure is the main source of power consumption from the service provider’s 

perspective in WSNs. Distributed nonlinear state estimation in wireless sensor a network will 

be seamlessly integrated with the forthcoming 5G communication system. Implementations 

of WSNs have to address a set of technical challenge. Energy efficient wireless 

communications systems are being sought and are typical of WSNs. therefore, a novel 

distributed state algorithm to reduce the energy consumption is required. In the effort to 

provide energy efficiency, I will explore compressive sensing (CS) technique based on the 

revelation that a sufficient compressible or sparse signal can accurately be recovered from 

smaller number of measurements than the unknown. Specifically, the reconstruction 

performance of the distributed filter is expected to be comparable to the centralized 

counterpart where the measurements from the sensors are collected as a centralized 

measurement in fusion center.  

2.1. WSN’S ENERGY CONSUMPTION 

Power efficiency in WSNs is generally accomplished in three ways: 

1. Low-duty-cycle operation. 

2. Local/in-network processing to reduce data volume (and hence transmission time). 

3. Multihop networking reduces the requirement for long-range transmission since signal path 

loss is an inverse exponent with range or distance. Each node in the sensor network can act as 

a repeater, thereby reducing the link range coverage required and, in turn, the transmission 

power. 
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2.1.0. Power Consumption of Communication Module. 

Based on the structure and power consumption of each component, the total power 

consumption for transmitting and for receiving, denoted by 𝑃𝑇  and 𝑃𝑅  , are specifically given 

by: 

 

𝑃𝑇 (𝑑) = 𝑃𝑇𝐵 + 𝑃𝑇𝑅𝐹  + 𝑃𝐴(𝑑) =  𝑃𝑇𝑂 +  𝑃𝑇𝑂 +  𝑃𝐴(𝑑)     (1:1) 

𝑃𝑅  =  𝑃𝑅𝐵 +  𝑃𝑅𝑅𝐹  +  𝑃𝐿 =  𝑃𝑅𝑂       (1:2) 

Where; 

 𝑃𝑇 (𝑑), is the power consumption of the power amplifier which is a function of the 

transmission range, d. 

 
𝑃𝑇𝐵

𝑃𝑅𝐵
⁄  , is the power consumption in base band DSP circuit for transmitting or receiving 

(mW). 

𝑃𝑇𝑅𝐹
𝑃𝑅𝑅𝐹

⁄   is the power consumption in front-end circuit for transmitting or receiving (mW). 

𝑃𝐿  is the power consumption of LNA for receiving (mW). 

Since 𝑃𝑇𝐵  and 𝑃𝑇𝑅𝐹 do not depend on the transmission range, the two components can be 

modeled as a constant,  𝑃𝑇𝑂 . Similarly, the power consumption of the receiving circuitry can 

be modeled as a constant, 𝑃𝑅𝑂, since 𝑃𝑅𝐵  and 𝑃𝑅𝑅𝐹 are clearly not dependent on transmission 

range, and 𝑃𝐿  is also a constant while assuming that the LNA is properly designed and biased 

to provide the necessary sensitivity to reliably receive, demodulate and decode a minimum 

power signal, 𝑃𝑅𝑥−𝑚𝑖𝑛  .  

While there are many types of RF power amplifiers, the total power consumption of a power 

amplifier, PA (d), will depend on many factors including the specific hardware 

implementation, DC bias condition, load characteristics, operating frequency and PA output 

power, 𝑃𝑇𝑋  . A simple class a power amplifier is shown in Figure 2.  
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Fig 2:1.Simple class a power amplifier 

The power amplifier delivers RF output power, 𝑃𝑇𝑋 , to the antenna/load. In general, the 

required RF output power, 𝑃𝑇𝑋(𝑑) for reliable transmission will depend on the transmission 

range, d. The large inductance, BFL, feeds DC power to the drain of the transistor. The total 

power consumption of the PA is given by 𝑃𝑑𝑐  and is the same as 𝑃𝐴  defined above. The ratio 

of RF output power to DC input power is called the drain efficiency (denoted as η) and is 

given by: 

η =  
𝑇𝑇𝑋

𝑃𝐷𝐶
⁄

 
         (1:3) 

By definition, the drain efficiency of a PA will be less than 100%. For example, simple class 

A power amplifiers have a maximum drain efficiency of 50% as equal amounts of power are 

dissipated in the bias circuitry and in the load. The drain efficiency will typically vary when 

the output power delivered to the load changes. In particular, for most types of power an 

amplifier, the drain efficiency increases while 𝑃𝑇𝑋  is increasing and reaches its maximum 

value when 𝑃𝑇𝑋  reaches the maximum output power 𝑃𝑀𝑎𝑥 . 

By combining the concept of drain efficiency with the formula described in the previous part 

of this section, the power consumption of the communication module can be modeled as: 

 𝑃𝑇 (𝑑)  = 𝑃𝑇𝑜 +
𝑃𝑑

η⁄         (1:4) 

𝑃𝑅 = 𝑃𝑅𝑂          (1:5)  
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2.1.1. Channel Model 

The RF environment and communication channel are simply modeled by only considering 

path loss and by ignoring fading, multi-path and other more complex effects. Thus, 

𝑃𝑇𝑥 =
𝑃𝑇𝑥

(𝐴 × 𝑑∝)⁄         (1:6) 

Where 𝑃𝑇𝑥the RF power is delivered to the antenna by the PA of the transmitting sensor node 

and 𝑃𝑅𝑥 will be the RF power received by the antenna of the receiving sensor node and 

delivered to the LNA.The parameter A is determined by the characteristics of the transmitting 

and receiving antennas. The path loss exponent is given by α and is about 2 for free space and 

will increase due to the presence of obstacles. 

2.1.2. Basic power consumption model 

Combining equations (1.4) and (1.5), we can determine the power consumption of the 

communication module for a given radio environment as follow; 

𝑃𝑇 (𝑑)  = 𝑃𝑇𝑜 +
𝑃𝑅𝑥×𝐴×𝑑𝛼

η
       (1:7) 

The SINR (Single-to-Interference and Noise-Ratio) requirements of the receiver determine 

the minimum required received power, 𝑃𝑅𝑥−𝑚𝑖𝑛 , for reliable communication. Thus, the 

minimum power consumption to reliably transmit data to another sensor node which is 

located at a distance, d, is given by: 

𝑃𝑇 (𝑑)  = 𝑃𝑇𝑜 +
𝜀×𝑑𝛼

η
        (1:8) 

Where ε is a constant given by𝑃𝑅𝑥−𝑚𝑖𝑛 × 𝐴. Similarly, the power consumption of a sensor 

node to reliably receive data is a constant and is given by: 

𝑃𝑅 = 𝑃𝑅𝑂          (1:9) 

2.1.3. Multi-hop power consumption model. 

In order to evaluate the power consumption model for a multi-hop network, a network model 

is needed. If we assume a channel model, which only includes path loss then a multi-hop 

routing scheme will perform the best in a simple 1-D linear WSN topology. The single-hop 1-
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D linear WSN consist of a source node S and a destination node D separated by a distance R 

and a multi-hop 1-D linear WSN has an additional n-1 intermediate identical relay nodes 

intermediate identical relay nodes Ni, i=1, …n-1 placed in a line from S to D. as shown in the 

figure below 

 

 

Fig 2.1.Network Model 

𝑃𝑅 Describes the power consumption for receiving 

 𝑃𝑇 (𝑑𝑖) Denotes the power consumption for transmitting over a distance d.i is an integer 

from 1 to the total number of hops, n 

𝑃𝑇 (
𝑅

𝑛⁄ ) Denotes a power consumption for transmitting over a distance 𝑅
𝑛⁄ , we use 𝑃 (n) to 

denote the total power consumption for sending from S to D with n-hops. 

We ignore the power consumption in the destination node D, because it is assumed to be 

connected to an external power supply and is not resource constrained. Based on the network 

model in fig above we obtain the Multihop power consumption model with arbitrary distance 

between nodes as follows; 

𝑃 (𝑛)  = (𝑛 − 1)𝑃𝑅𝑂 + 𝑛𝑃𝑇𝑂 +
𝜀

η
∑ 𝑑𝑖

𝑎𝑛
𝑖=1      (2:0) 

Similarly, based on the network model we can obtain the multi hop power consumption 

model with equal distance between nodes as follow; 

𝑃 (𝑛)  = (𝑛 − 1)𝑃𝑅𝑂 + 𝑛𝑃𝑇𝑂 +
(𝑛×𝜀×(𝑅⁄𝑛)𝛼

η
     (2:1) 

This model of WSN power consumption clearly shows in particular the dependency of the   

power amplifier performance (i.e. Drain efficiency, η). 
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The sensor nodes are deployed in a distributed ad hoc manner to cooperate with each other to 

perform their tasks, by seamlessly integrating the WSNs, 5G will touch many scenarios in the 

future, such as industrial automation, smart cities etc However, state estimation, or signal 

reconstruction is a cornerstone in the aforementioned scenario. On the other hand, the 

distributed estimation schemes are becoming increasingly popular in WSNs community due 

to their high fault tolerance and scalability for large –scale dynamical system with distributed 

measurements over large geographical area. 

Unlike the centralized scheme, the distributed schemes usually rely on device to device 

communication among sensor nodes and the information fusion task is distributed among 

multiple sensor nodes without the infrastructure (fusion center). 

The infrastructure is the main source of power consumption from the service provider’s 

perspective in WSNs.therefore, it is essential to explore a novel distributed state algorithm to 

reduce the energy consumption. 

In the effort to provide energy efficiency, I will explore compressive sensing (CS) technique 

based on the revelation that a sufficient compressible or sparse signal can be accurately 

recovered from smaller number of measurements than the unknown.  

2.2. FUNDAMENTALS OF ALGORITHM 

2.2.1. Compressive Sensing 

Compressive sensing theory states that a signal can be sampled without any information loss 

at a rate close to its information content. Compressive sensing relies on two fundamental 

properties: Signal sparsity and incohence.signals are represented with varying levels of 

sparsity indifferent domain. For example, a single tone sine wave is either represented by a 

single frequency coefficient or by an infinite number of time domain samples. Consider a 

real-valued, finite length, one-dimensional, discrete signal x, which we view as an, 

 N × 1 column vector in RN with elements  𝜒(𝑛), 𝑛 = 1,2 ∙∙∙∙∙∙∙ 𝑁, 
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We treat the image or higher-dimensional data by vectorizing it into a long one-dimensional 

vector. 

 Any signal in RN can be represented in terms of a basis of N×1 vector  {𝜓}𝑖=1
𝑁 . For simplicity, 

assume that the basis is orthonormal.Forming the N ×N basis matrix   𝜓[𝜓|𝜓1 ∙∙∙∙∙∙∙∙ |𝜓𝑛]: 

By stacking the vector {𝜓𝑖}  as columns, we can express any signal;  

𝜒 = ∑ 𝑆𝑖
𝑁
𝑖=1 𝜓𝑖  or  𝜒 = 𝜓𝑠         (4:3) 

Where s is the N×1 column vector of weighting coefficients 𝑠𝑖 = 〈𝜒; 𝜓𝑖〉 = 𝜓𝑖
𝑇𝜒  and where T 

denotes the transpose operation. Clearly, x and s are equivalent representations of the same 

signal, with x in the time domain and s in the 𝜓 domain. 

I will focus on a signal that have a sparse representation, where x is a linear combination of 

just K basis vectors, with 𝐾 ≪ 𝑁.That is, only K of the 𝑆𝑖 in (22) are non zero and  (𝑁 − 𝐾) 

are zero. Sparsity is motivated by the fact that many natural and manmade signals are 

compressible in the sense that there exists a basis 𝜓 𝜖 𝑅𝑁×𝑁  Where the representation (4:3) 

has just a few large coefficients and many small coefficients. 

Compressible signal are well approximated by K-sparse representations: this is the basis of 

transforming coding. For example, natural images tend to be compressible in the discrete 

cosine and wavelet bases on which the JPEG and JPEG-2000 compression standard are 

based. 

Transform coding plays a central role in data acquisition systems where the number of 

samples is high. in this frame work, we acquire the full N-sample signal x;compute the 

complete set of transform coefficients {𝑠𝑖} via = 𝜓𝑇𝑥 ;Locate the K largest coefficients and 

discard the  (𝑁 − 𝐾) smallest coefficiates;and encode the K values and location of the largest 

coefficients. 
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NB/ Sparsity. A signal is called sparse if most of its components are zero. As empirically 

observed, many real-world signals are compressible in the sense that they are well 

approximated by sparse signals 

2.3. SPARSE REPRESENTATIONS 

For sparse data, only the non-zero coefficients need to be stored or transmitted in many cases; 

the rest can be assumed to be zero. Mathematically: 

We say that a signal x is K-sparse when it has at most K non-zeros, i.e.,         ‖𝑥‖0 ≤ K. We let 

∑ = {𝑥: |𝑥|0  ≤ K  }𝑘         (4:4) 

Denotes the set of all K-sparse signals. Typically, we deal with signals that are not 

themselves sparse, but which admit a sparse representation in some basis 𝜓 . In this case we 

will still refer to x as being K-sparse, with the understanding that we can express x as       x = 

𝜓𝛼 where 0 α ≤ K .  

Sparsity has long been exploited in signal processing and approximation theory for tasks such 

as compression. Sparsity also has been exploited heavily in image processing tasks, since the 

multi scale wavelet transform provides nearly sparse representations for natural images. As 

an example of one-dimensional (1-D) signal that has different signal sparsity consider the 

signal. 

𝑥(𝑡) = 10 sin(20𝜋𝑡 1000⁄ ) − 5 sin(60𝜋𝑡 1000⁄ ) + 4 sin(100𝜋𝑡 1000⁄ )  (4:5) 

Where 1 ≤ t ≤ 1000. 1 ≤ 𝑡 ≤ 1000 

One can interpret sampling as a basis expansion where the elements in the basis are impulses 

placed at periodic points along the time axis. In this case, the dual basis consists of sinc 

functions used to reconstruct the signal from the discrete-time samples. This representation 

contains many non-zero coefficients, and due to the signal’s periodicity, there are many 

redundant measurements. Representing the signal in the Fourier basis, on the other hand, 

requires only two non-zero basis vectors, scaled appropriately at the positive and negative 
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frequencies. Applying the Discrete Cosine Transform (DCT) to the signal, shows that only 

335 nonzero 

DCT coefficients represent the signal  𝑥(𝑡) . Similarly, applying the Discrete Wavelet 

Transform (DWT) to the signal shows that only 265 non-zero DWT coefficients represents 

the signal 𝑥(𝑡) illustrates the four basis expansions that yield different levels of sparsity for 

the same signal𝑥(𝑡). 

An important assumption used in the context of compressive sensing is that signals exhibit a 

degree of structure. Here, it is important to note that there is a difference between signal 

sparsity and signal compressibility. The signal is considered sparse if it has only a few non-

zero values in comparison with its overall length. However, it is considered compressible if 

it’s sorted coefficient magnitudes decays rapidly.  

To consider this mathematically; 

Let x be a signal which is compressible in the basis  𝜓, 𝑥 = 𝜓𝛼 ,    (4:6) 

Where α are the coefficients of x in the basis 𝜓. If x is compressible, then the magnitudes of 

the sorted coefficients observe power law decay; 

|𝛼𝑠| ≤ 𝐶𝑠𝑠−𝑞 , 𝑠 = 1,2,∙∙∙∙∙,        (4:7) 

 A signal is defined as being compressible if it obeys this power law decay. The larger q is, 

the faster the magnitudes decay, and the more compressible a signal is. 

2.4. THE CONCEPT OF COHERENCE 

Concept of coherence is extensively used in the field of sparse representations of signals. In 

particular, it is used as a measure of the ability of suboptimal algorithms such as matching 

pursuit and basis pursuit to correctly identify the true representation of a sparse signal. 

Current assumptions in the field of compressed sensing and sparse signal recovery impose 

that the measurement matrix has uncorrelated columns.  To be formal, one defines the 
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coherence or the mutual coherence of a matrix A is defined as the maximum absolute value of 

the cross-correlations between the columns of A. 

Formally, let 𝑎1,𝑎2∙ ⋯ ⋯ 𝑎𝑛 be the columns of the matrix A, which are assumed to be 

normalized such that  𝑎𝑖
𝑇𝑎𝑖 = 1. the mutual coherence of A is then defined as; 

𝜇(𝐴) = max
1≤𝑖≠𝑗≤𝑚

|𝑎𝑖
𝑇𝑎𝑗|       (4:7) 

A lower bound is  

𝜇(𝐴) ≥ √
𝑁−𝑑

𝑑(𝑁−1)
        (4:8) 

We say that a dictionary is incoherent if 𝜇(𝐴) is small. Standard results then require that the 

measurement matrix satisfy a strict incoherence property, as even the RIP imposes this. If the 

dictionary D is highly coherent, then the matrix AD will also be coherent in general. 

Coherence is in some sense a natural property in the compressed sensing framework, for if 

two columns are closely correlated, it will be impossible in general to distinguish whether the 

energy in the signal comes from one or the other. For example, imagine that we are not under 

sampling and that A is the identity so that we observe  𝑦 = 𝐷𝑥.Suppose the first two columns 

are identical, 𝑑1 = 𝑑2. Then the measurement 1 d can be explained by the input vectors 

(1,0, ⋯ ⋯ 0) or (0,1 ⋯ ⋯ 0)  or any convex combination. Thus there is no hope of 

reconstructing a unique sparse signal x from measurements𝑦 = 𝐴𝐷𝑥. However, we are not 

interested in recovering the coefficient vector x, but rather the actual signal 𝐷𝑥. 

2.5. THE KALMAN FILTER 

The Kalman filter (KF) is an efficient recursive filter that estimates the state of a linear 

dynamic system from a series of noisy measurements. 

During the past few years, huge efforts have been made to develop efficiate filters for 

nonlinear and non-Gaussian systems. The Bayesian probabilistic inference provides an 

optimal solution framework for dynamic state estimation problem, but the solution requires 
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propagating the full density function (PDF), which makes researchers give up obtaining the 

optimal filters analytically. As a consequence, some approximations, in the Bayesian 

framework, have been adopted to develop the suboptimal numerical filtering techniques. 

When confronting nonlinear filtering problems, the first commonly used approach is to 

linearize.the extended Kalman filter (EKF) which has been used as the state-of-the art filter in 

many engineering areas, typically applies the KF to nonlinear dynamic systems by simply 

linearizing the entire nonlinear model, thus trying to avoid the nonlinear aspects of such 

problems. The EKF can give particularly poor performance if the dynamics systems are 

highly nonlinear. 

As a better alternative to the EKF, a large number of non linear filter based on the idea of 

Bayesian sampling strategies deterministic sampling and random sampling. The former 

includes the unscented Kalman filter (UKF),the Gaussian Hermite filter (GHF),the central 

difference filter (CDC) etc. 

This types of filter utilizes the Gaussian assumption to approximate in PDF.A well-known 

filter using random sampling is the particle filter (PF),which also include the Gaussian 

particle filter (GPF),the quasi-Gaussian particle filter (GPF),the quasi-Gaussian particle filter 

(QGPF) etc.These filters approach PDF by using a certain number of particle. 

The Kalman filter provides an efficiate recursive estimator for the unobserved state of linear 

discrete time dynamical system in the presence of measurement error. Kalman (1960) first 

introduced the method in the engineering literature, but it can be understood in the context of 

Bayesian inference. The Kalman Filters is similar in nature to the standard linear regression 

model. The state of the process 𝑠𝑡  corresponds to the regression coefficient; however the state 

is not constant over time, requiring the introduction of the transition equation 

Let 𝑦𝑡 denote a vector of observed variable at the time t and let 𝑠𝑡 denote the unobserved state 

variable of the system at time t. I wish to conduct inference about the state variable given 
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only the observed data {𝑦𝑡} and the structure of a linear model consisting of measurement 

equation and transition equation 

The evolution of the observed variable depends on the state variable through a linear 

measurement equation. 

𝑦𝑡 = 𝐹𝑠𝑡 + 𝜀𝑡              𝜀𝑡 ∼ 𝑁(0, 𝛀𝜀)      (4:9) 

The variable 𝑦𝑡 is observed with measurement error which follows the Normal distribution 

with zero and co-variance matrix   𝛀𝜀. 

The state vector 𝑠𝑡 obeys transition equation. 

𝑠𝑡 = 𝐺𝑠𝑡−1 + 𝜂𝑡 ∼ 𝑁(0, 𝛀𝜂)       (5:0) 

Where;  

𝐺 and 𝛀𝜂 are known matrices and 𝜂𝑡 Captures the influence of effects that are outside the 

model on the state transition process. The noise terms 𝜀𝑡  and 𝜂𝑡 are independent. In general 

𝐺 and 𝐹 can be time-dependent but for the sake of simplicity the time subscripts are omitted 

here. 

2.6. THE CS-EMBEDDED KF 

The CSKF algorithm is aimed at solving a stochastic CS problem of the form. 

min
𝑧̂𝑘

𝐸𝑧𝑘|𝛾𝑘
[‖𝑧𝑘 − 𝑧̂𝑘‖2

2 ]𝑠. 𝑡. ‖𝑧̂𝑘‖ ≤ 𝜖 ′
1            (5:1) 

It can be shown that for both proper values of the tuning  𝜖 ′ and 𝜖′ the solution of both 4:3 

and the convex 𝑙1 relaxation of concide.The nonlinear in-equality constraint in (4:3) is readily 

treated within the conventional KF framework using a so-called pseudo-measurement (PM) 

technique. In practice this is carried out by recasting this constraint as. 

0 = 𝐻̅𝑘𝑧𝑘 − 𝜖 ′, 𝐻̅𝑘: = sign(𝑧𝑘)       (5:2) 

Where sign(𝑧𝑘) denotes a row vector consisting of the sign of the entries in 𝑧𝑘.This 

formulation facilitates the implementation of the standard KF update equation which are 
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provided in algorithm 1 for the sake of completeness. Notice that this approach assumes that 

𝜖 ′ is random quantity, specifically a zero-mean Gaussian random variable with variance   𝜎2. 

2.7. RELATED STUDIES 

A historical summary of the energy conditions is maintained using the relation; 

𝑥̅𝑘 = 𝛼𝑥̅𝑘−1 + (1 − 𝛼)𝑥̅𝑘        (3:1) 

Where; 

α is the weighted factor 

𝑥̅𝑘 is the energy generated in a slot. 

𝑥̅𝑘−1 is the historical average of the previously stored energy. 

In 2008, David D. L. developed a mobile host, which is capable to wirelessly transfer 

electrical energy on a 2.4 MHz signal to charge nodes in remote locations. The mobile host is 

also capable to collect sensing data from the deployed nodes. A test-bed is implemented 

using a helicopter mounted node. For an assumed distance of two meters, and assuming no 

losses, attached capacitors are charged in no less than 12 seconds. The transmission and 

receiving antennas used in the experiment are of the size of the order of 18.7 × 3 and 15 × 15 

inches respectively. Although, this effort explored a new path towards the possibility of 

charging a node in the field, but using such bulky platform is infeasible in sensor networks 

due to their limited size and cost requirements. The above effort poses no concern regarding 

the overhead in terms of size and cost of the sensor node. Increase in the distance between the 

transmitter and receiver increases the charging duration, reducing the overall efficiency of the 

system. 

Some similar efforts on wireless charging of nodes are proposed using off the shelf 

devices, in order to improve sensor network lifetime. The wireless energy is transferred 

through electromagnetic waves to sensor nodes equipped with rechargeable batteries. Several 

experiments were carried out to investigate the effect of distance and location of nodes on the 
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energy transfer. It was observed that when the distance between the transmitter and receiver 

is increased beyond 12 meters, it takes almost infinite time to charge a particular node. It is 

also observed that with efficient placement of nodes, the charging time can be substantially 

reduced.  

An energy charging cycle aware routing algorithm is proposed by modifying the 

existing Ad-hoc On Demand Routing (AODV) routing protocols, since typical routing 

metrics based on shortest path are not applicable in energy harvesting networks.  

The route request (RREQ) packet includes; 

𝑇𝑐ℎ
𝑚𝑎𝑥(𝑘) the maximum charging time of all nodes traveled on path 𝜅, (𝑘) and  𝜂𝑐 (𝑘)𝑚𝑎𝑥 ,the 

observed standard deviation of this maximum value. Each node i along the path update the 

RREQ with its respective charging time in case it’s greater than the existing. 

The destination node selects the minimum charging time path among the available paths. 

𝜓 = 𝑚𝑖𝑛{𝑇𝑐ℎ
𝑚𝑎𝑥(𝐾)},⩝ 𝜅       (3:2) 

𝜓 = 𝑚𝑖𝑛{𝑚𝑎𝑥[𝑡𝑐ℎ
𝑖]} ⩝ 𝑖 ∈ 𝑝𝑎𝑡ℎ 𝑘,⩝ 𝑘     (3:3) 

An optimization framework is proposed to address the trade-offs of the charging and 

transmission duration, since both occurs in the same frequency band. The base station selects 

the optimal path, and replies Route Reply (RREP) to the corresponding nodes with the 

charging time 𝑡𝑐ℎ and transmission time 𝑇𝑥common to all of the nodes along the path. The 

optimization framework returns the charging duration 𝑡𝑐ℎ and frame length 𝑇𝑓𝑟𝑎𝑚𝑒 = 𝑇𝑥 +

𝑇𝑐ℎ.Therefore, the source nodes upon receiving the RREP then begins forwarding the 

packets. The optimization framework is described below; 

Given: 

                                                           𝐿𝑙𝑖𝑚, 𝐸𝑅𝑆𝑙𝑖𝑚,𝑁,            (3:4)              

  

To find: 
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                 𝑇𝑐ℎ, 𝑇𝑓𝑟𝑎𝑚𝑒                                         (3:5) 

Maximize   Throughput = 
𝑇𝑥∙𝑅

𝑇𝑓𝑟𝑎𝑚𝑒
                                        (3:6) 

     Subject to: 

   (𝐸𝑟𝑒𝑐 − 𝐸𝑖𝑑𝑙𝑒) ∙ 𝑇𝑐ℎ − 𝐸𝑡𝑥 ∙ 𝑇𝑥 > 0,                      (3:7)                                                                 

    𝑁 (𝑇𝑐ℎ +
𝑃+𝐻

𝑅
) ≤ 𝐿𝑙𝑖𝑚     (3:8) 

    
1

𝐸𝑆𝑅0
[1 − 𝑘 ∙ 𝑡 ∙ 𝑒

−4700

𝑇+273] >
1

𝐸𝑆𝑅𝑙𝑖𝑚
,     (3:9) 

       𝑇𝐹𝑟𝑎𝑚𝑒 = 𝑇𝑥 + 𝑇𝐶ℎ      (4:0)   

For N number of nodes in the path, throughput is defined as the ratio of the number of bits 

sent during 𝑇𝑥 to the frame length 𝑇𝐹𝑟𝑎𝑚𝑒. To maximize the throughput, the constraints are 

also defined, where 𝐸𝑅𝑒𝑐 is the energy receiving rate from the wireless charger and 𝐸𝐼𝑑𝑙𝑒 is 

the sensor node’s idle energy during charging time. 𝐸𝑡𝑥 is defined as the rate, at which a 

sensor node losses energy during transmission. Similarly, P is the packet size, H is the header 

size and R is defined as the sending rate of the data at the N hop route. 

The constraints are explained below: 

• The first constraint in ensures that the sensor is alive after each frame duration. The sensor 

expends 𝐸𝑖𝑑𝑙𝑒  during its charging time while it receives energy at the rate 𝐸𝑅𝑒𝑐 from the 

wireless transmitter in time𝑇𝑐ℎ. It also loses energy 𝐸𝑡𝑥 during transmission as mentioned 

above, thus, the residual energy should at be at least greater than 0. 

• The second constraint in states that the end-to-end packet latency for the N hop route should 

be less than a pre-decided limit 𝐿𝑙𝑖𝑚. In the worst case, a sensor may experience a delay equal 

to the charging time𝑇𝑐ℎ, where no data can be sent and the transmission delay, given as the 

ratio of the packet size P with the header size H and the sending rate R. 

 • The Equivalent Series Resistance (ESR) in is a metric which determines the quality of 

capacitor operation. The capacitors are considered dysfunctional once the end-end latency 
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limit 𝐿𝑙𝑖𝑚 is exceeded. 𝐿𝑙𝑖𝑚 and the capacitor quality metric 𝐸𝑆𝑅𝑙𝑖𝑚 are dependent on the 

application requirements. The T  is the absolute temperature in Kelvin, at which the capacitor 

operates. Similarly, t  is the operational time and k is a design constant. 

• The constraint in (7) provides the relationship between the charging and transmission times 

and the frame time. 

The performance evaluation highlights the following situations: 

1. When 𝐿𝑙𝑖𝑚 is too small, either the node will not be able to charge enough or it may not be 

alive after each transmission. 

2. By considering values of the charging time lower than the optimal derived 𝑇𝑐ℎ, the network 

throughput is substantially increased. However, the rate at which the throughput increases 

exhibits a non-linear behavior, thus hinting that for sudden high bandwidth needs, decreasing 

the recharging time (thereby increasing the transmission time) will not incur a proportionally 

high degradation of lifetime. Moreover, we also observed that different packet sizes do not 

significantly impact the performance. 

Several algorithms are proposed, in which nodes adjust their duty cycle by alternating 

between sleep and wakeup modes to reduce battery consumption. The idea is to set the node 

in a low power mode when there is no data communication in progress. In this way, energy 

wastage is avoided as the nodes only wakes up when there is a need of radio transmission or 

reception. Such algorithms can prolong the overall network lifetime by utilizing the battery 

only when they are awake.Xu et al (Xu et al,.2003) mentioned a number of challenges, 

including duty cycle control of redundant nodes, connectivity maintenance, self configuring 

and redundancy identification in a localized and distributed fashion. Duty cycle based 

algorithms can be further categorized as Topology control protocols, Sleep/wake-up 

protocols and MAC protocols with low duty-cycles. Topology control Protocols refers to 

schemes that adapts dynamic network topology in accordance to the application 
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requirements. The aim is to set some nodes in sleep mode while keeping the network 

operational, hence prolonging network lifetime. Such protocols can be further divided as 

location driven and connectivity driven. In Location driven approaches, nodes are set to sleep 

or wake-up mode on the basis of their location. The location of the nodes are assumed to be 

known so that nodes can coordinate with each other to decide, which node in a particular area 

should be turned on, while not compromising coverage of that particular area.  

Topology control schemes aim to reduce the topology and maintain it for topology 

conservation. Most of the efforts in this domain lie in the area of Connected Dominating Set 

(CDS) or backbone, which aims to form a reduced topology working on behalf of other nodes 

in the network. In this area, the authors proposed CDS Rule K algorithm that uses marking 

and pruning rules for exchanging neighbors list among a set of nodes. In CDS Rule K, a node 

remains marked as long as there is at least a pair of unconnected nodes in its neighbors; it is 

unmarked when it finds that all its neighbors are covered with high priority. Similarly, 

Energy Efficient CDS (EECDS) algorithm is proposed in, which also follows a two phase 

topology control scheme in order to form a connected dominating set based on coordinated 

reconstruction mechanism to prolong network lifetime and balance energy consumption. On 

the other hand, the authors in proposes A3 and A1 algorithm which constructs a backbone or 

a CDS in a single phase while in, the authors propose Poly algorithm, which provides 

reliability in addition to energy efficiency by constructing a backbone in a single phase. For 

evaluation of topology control algorithms, we used Attaraya simulator that has been 

specifically designed for WSNs. The Attaraya underlying features provide many advantages 

which includes, different energy and communication models, energy and node location 

distribution resources that can adapted according to the requirement in the simulations. On 

the other hand, the performance of the algorithms was evaluated under two metrics namely 

energy overhead and residual energy. The former shows the overhead associated or the 
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energy consumed during the exchange of the messages, while the latter shows the remaining 

energy at the end of Topology Control operation. For evaluation of the algorithms under 

discussion, the nodes were distributed in an area of 600m × 600m while varying the node 

density from 50 to 250 nodes. Similarly, the algorithms were also evaluated for indoor Grid 

H-V and H-V-D topologies. In Grid H-V and H-V-D, nodes communicate with their 

horizontal, vertical and diagonal neighbors depending upon the topology deployed. The 

transmission radius and initial energy level of each node are set to 42m and 1J, respectively. 

The actuation energy equals 50nJ/bit while the communication energy is 100PJ/bit/m2. All 

the results were averaged over 100 simulations runs and the nodes energy distribution follows 

a uniform process while the node location distribution follows a random process. 

The results demonstrate that the schemes using two phase backbone topology construction 

mechanism incur more energy overhead due to the use of large number of messages, while 

the schemes constructing backbone in a single phase incur less energy overhead. Similarly, 

the residual energy is also remains high for schemes with single phase mechanism for the 

same reasons mentioned earlier and therefore provides better energy efficiency. 

Hyper-graph theory based topology control algorithm to replace simple graphs in large scale 

WSNs. Simple graph theory based algorithms results in high computational complexity and 

usually requires large solution space to manage large scale WSNs due to their small 

granularity. The transmission paths computed using traditional graph theory techniques 

provide lower fault tolerance due to unattended sensor nodes operations and unreliable 

wireless transmission channels. To maintain the connectivity of a delivery path, lots of 

control message to are required. Such control messages uses more bandwidth with increased 

energy consumption. (Zhang el al 2013) proposed a topology management algorithm called 

ESRAD. 
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Bhattlachaya el al (Bhattachaya and Kuman, 2014) presented algorithm that generates 

the minimum length multicast tree to send the minimum length multicast tree to data from 

one node to multiple sinks in WSNs Named towards source time (TST) algorithm if focuses 

on the minimization of number of hops, one of the most important factor in Wireless sensor 

network by producing an efficiate multicast tree with a low complexity.  

The issue of limited solution space is addressed by using variable scale hyper edges. 

Similarly, the use of mutual back-up delivery paths in a single hype edge improves the fault 

tolerance capability. Comparison results with simple flooding, Directed Diffusion, EADD 

and Enhanced Fault Tolerant 

Besides topology control algorithms, energy efficient routing algorithms such as 

AODV, Directed Diffusion, SPEED and Reliable Energy Aware Routing protocol (REAR) 

also ensure minimum energy consumption at relay nodes. Recently research focus is shifted 

toward energy efficient fault tolerant routing algorithms. One such algorithm DLS (Dynamic 

local stitching) is proposed recently in. DLS aims to repair broken transmission paths in 

WSN, specially, in harsh environments comprising unattended sensor nodes with unreliable 

wireless transmission channels. Unlike typical routing algorithms such as AODV, ENFAT-

AODV, Directed Diffusion, SPEED and REAR which reroute the entire paths. DLS only 

repairs broken fragments of the original path, thus minimizing energy consumption as well as 

the recovery delay. 

Geographical Adaptive Fidelity (GAF) and Geographical Random Forwarding 

(GeRaF) are typical examples based on location driven approaches. Muzznicki et al., 2012) 

after categorizing the most common WSN multicast procedure based on the geographic 

position of a target group. The author presented algorithm based on Dijkstra for discovering 

the shortest energy efficiate path via nodes that provide the maximum geographical advance 
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toward sinks.Aman Kansal et al., 2010 proposed environmental energy availability method 

for power management algorithm. Harvesting energy load in anode. 

  The protocols such as Span and Adaptive Self Configuring sensor Networks 

Topologies (ASCENT) are examples of efforts implementing such approach. These efforts 

although demonstrated that topology control protocols provide better efficiency in terms of 

increasing network lifetime but efforts are still required to couple such protocols with other 

energy conservation protocols for perpetual network operation. 

Duty cycling protocols can also be further classified on the basis of power 

management by adapting different sleep and wake-up protocols or MAC protocols having 

low duty cycles. For better understanding, sleep and wake-up protocols are further divided 

into on-demand, scheduled rendezvous and asynchronous protocols. On-demand protocols 

are used in event driven scenarios, where nodes should only wake-up when they are needed 

for communication. Typical Examples of such schemes are Sparse Topology and Energy 

Management (STEM), Pipeline Tone Wake-up (PTW) and Radio Triggered sleep wake-up 

schemes. The issue related to informing a sleeping node to wake-up is addressed by using 

multiple radios. A low rate and low power radio is used for signaling and a more power 

consuming radio is used for data communications. It seems to be ideal protocol but radio 

triggered wake-up scheme is not a feasible solution. It can only be applied in situations where 

nodes are in close proximity to each other. In addition, using a second radio seems to be an 

unrealistic approach. In scheduled rendezvous, nodes wake-up according to a schedule and 

remain active for a short period and then enter sleep mode till the next rendezvous time 

arrives. Such protocols are convenient, although, synchronization is required between the 

nodes. Such scheme also poses a drawback in terms of additional synchronization overhead. 

In asynchronous protocols, a node can wake-up independently of others and can still be able 

to communicate with its neighbors. It is easier to implement and ensures network 
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connectivity even in highly dynamic conditions. Asynchronous protocols are said to be less 

energy efficient, therefore, consequently resulting in higher duty cycles than synchronous 

nodes. 

An alternative duty cycling approach is by applying MAC protocols with low power 

consumption. These can be classified as Time Division Multiple Access (TDMA) based, 

contention based and hybrid MAC protocols. 

In TDMA based protocols, nodes duty cycle is enabled only when channel access is required. 

A fixed time slot is assigned to each node and the energy consumed is reduced to only the 

respective time slot. The protocols such as Traffic-Adaptive MAC Protocol (TRAMA), Flow 

Aware Medium Access (FLAMA) and Lightweight Medium Access Control (L-MAC) are 

the most common ones adapting such schemes. 

The TDMA based schemes provides efficiency in terms of energy consumption, since 

nodes turn on their radios only in their own allotted time slot (Ibrahim M. M. El Emary, 

2013). These protocols provides limited flexibility and are generally scalable, however, they 

often requires tight synchronization and are very sensitive to interference. These protocols 

perform worse than contention based protocols in low traffic conditions and are therefore, 

rarely used in WSNs. 

The contention based protocols on the other hand, achieves duty cycling by 

integrating medium access functionality with sleep or wake-up process. The most common 

schemes based on this principle are Berkeley MAC (B-MAC), Sensor MAC (S-MAC) and 

Data gathering MAC (D-MAC). These protocols are robust and scalable and maintain lower 

delay than TDMA based protocols, however, they results in high energy consumption due to 

contention and collisions. The hybrid a scheme refers to algorithms combining properties 

from both, TDMA based and contention based schemes. It behaves as contention based 

scheme when the level of contention between nodes is low, and then switches to TDMA 
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based scheme when the level of contention is higher. These are complex schemes and are 

feasible only in situations where high numbers of nodes are deployed. The Zebra MAC (Z-

MAC) and Hybrid MAC (HYMAC) are popular hybrid scheme combining strengths of 

TDMA based and Carrier Sense Multiple Access (CSMA) based schemes. Dynamic duty 

cycling is also applied by few researchers for harvesting enabled sensors. The energy 

allocation to the application is based on the availability of daily harvested energy. Kansal A. 

provided an adaptive duty cycling scheme for the energy harvesting sensor node in Moreover, 

Dynamic Power Management (DPM) algorithms can also be used to efficiently manage 

energy for a sensor node. In DPM, the sensor node is turned on when there is no sensing 

activity and triggered in case of occurrence of any event. Such algorithms mostly suffer from 

the overhead of sleep state transitions, specifically, in storage and retrieval of the sensor 

processing state during switching. Similarly, Dynamic Voltage-Frequency Scaling (DVFS) 

can also be adapted to manage the node energy consumption. DVFS schemes allow the node 

to operate at the maximum processing speed if the stored energy is sufficient; otherwise, the 

system reduces the execution of sensing tasks in order to conserve energy. The efficiency of 

such schemes to save energy depends on the application requirements for task execution. 

Energy conservation for longer network operation is only possible when sensing requests by 

the application are less frequent. 

Data driven approaches are generally focused to reduce the amount of sampled data 

while keeping sensing accuracy within the acceptable level. Such approaches can be 

classified as data reduction schemes and energy efficient data acquisition. The data reduction 

schemes address the case of unneeded samples. The data prediction is a further classification 

of data reduction schemes, which are focused on building an abstraction of the sensed data, or 

in other words, a model for future data prediction. The data prediction schemes can be further 

divided into stochastic approaches, time series forecasting and algorithmic approaches. The 
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stochastic approaches works on the principle of stochastic characterization of the phenomena 

as proposed in the Ken solution. Such protocols are involved in high-level computations such 

as aggregating, with the expense of high computational costs. These approaches are feasible 

in situations where powerful sensor nodes are available in the network, thus requires larger 

battery size. In time series forecasting, set of historical values are obtained by periodical 

sampling, which are then used to predict a future value in the same series. The most common 

techniques using these approaches are Moving average (MA), Auto-regressive (AR) or Auto-

regressive moving average (ARMA) methods. This scheme is simpler and lightweight in 

implementation and provides satisfactory results in terms of accuracy. Examples of such 

approaches are Probabilistic Adaptable Query system (PAQ) and Similarity based Adaptive 

Framework (SAF) [98, 99]. In algorithmic approaches, heuristic or state transition model 

describing sensed phenomena are used. Typical examples of such approaches are Prediction 

based Monitoring in Sensor Networks (PREMON) and Energy Efficient Data Collection 

(EEDC). These techniques are considered case by case as they are more application specific 

schemes. In addition, few energy prediction algorithms and dynamic duty cycling based on 

the available harvested energy are proposed in Energy efficient data acquisition protocols are 

more focused towards reducing energy consumption of the node sensing subsystem. Such 

protocols assume that greater amount of energy is consumed by the sensing sub system of the 

node than the communication subsystem. These schemes are further divided as adaptive 

sampling, hierarchical sampling and model based active sampling. In adaptive sampling, the 

main focus is to reduce the amount of data to be acquired from the transducer based on either 

spatial or temporal correlation between data. These schemes are more general and efficient, 

and mostly implemented in a centralized fashion, thus requiring high computations. In 

hierarchical sampling, different types of sensors are installed on nodes. These schemes are 

more energy efficient, but are more application specific. However, the cost associated with 
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the extra transceiver can be considered as a drawback of such schemes. The model based 

approaches are similar to data prediction schemes. The goal is to reduce the number of data 

samples by using computed models and saving energy, Adaptive Sampling Approach to Data 

Collection (ASAP), and Utility Based Sensing and Communication (USAC) are based on 

such schemes. 

Mobility based energy conservation can be achieved by considering few mobile nodes 

in the network. These mobile nodes can be of two types, based on their behavior. They can 

either be part of the network infrastructure in which their mobility is fully controllable or 

generally a robotized one. Such nodes may follow a predictable pattern of mobility. On the 

other hand, they can be part of the environment, in which nodes mobility is uncontrollable 

and unpredictable. However, in some cases they might follow a mobility pattern that is 

neither predictable nor random in general. Mobility based algorithms can be further divided 

in two categories. A mobile sink based approach, in which a mobile sink is used to collect 

data from source nodes in the field in order to increase network lifetime. It is shown that 

using mobile sinks nodes can improve networks lifetime by 5 to 10 times than using static 

sink nodes. However, the possibility of latency associated with the data arrival at the sink 

node should be taken into consideration. Some examples of such approaches are Greedy 

Maximum Residual Energy (GMRE) , Two Tier Data Dissemination (TTDD) and Scalable 

Energy-efficient Asynchronous Dissemination (SEAD) protocol. In a mobile relay based 

approach, message ferries are used for data collection from source nodes. These message 

ferries moves in the field to collect data, carry the stored data and forward it to the destination 

node. Mobile relays have almost similar functionality as in data Mobile Ubiquitous LAN 

Extension (MULE) approaches, where the vehicles periodically visit a network to collect 

data. However, some issues needs to be addressed such as the sensors have to be 

continuously in wake-up mode while waiting for the MULE to arrive for data collection. The 
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transmission schedule need to be defined to address the issue of the amount of time a MULE 

has to wait for data coming from the static nodes, and vice versa, when a sensor should 

transmit gathered data to the mobile element. Typical example of mobility based approaches 

is Zebra Net.  

Energy efficient network operation is also possible by defining several application layer 

protocols. Typical application layer protocols can be categorized into three types; Sensor 

Management Protocols (SMP), Task Assignment and Data Advertisement protocols 

(TADAP) and Sensor Query and Dissemination protocols (SQDDP). 

 Sensor Management Protocols (SMP) are used by network administrators to configure 

nodes to perform various tasks. These protocols can be used to introduce rules 

regarding data aggregation, time synchronization, sensor movements, clustering, 

authentication and key distribution. 

 Task Assignment and Data Advertisement protocols (TADAP) are used to handle 

user’s interests and sensor node advertisements. The users query for the sensing data 

they are interested and the corresponding sensor nodes advertise the requested data. 

TADAP provides the user software with efficient interfaces for interest dissemination 

which also supports energy efficient lower-level operations. 

 Sensor Query and Dissemination protocols (SQDDP) are designed for attribute or 

location based sensor query. Typical example of such query could be for the location 

of all the nodes sensing temperature higher than a certain threshold, where the 

threshold can be defined by the user. These protocols are helpful in ensuring messages 

exchange between the user and the sensor deployed in the field under different 

conditions. 

 Among all the energy conservation schemes, topology control schemes which are based on 

duty cycling are the most recent and provide better energy efficiency and longer network 
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lifetime. However, most of the current efforts are focused only towards energy conservation 

based on efficient energy consumption. Energy efficient designs of sensor hardware, 

software, algorithms and protocols have served well, but they eventually surrender when the 

attached batteries are drained. For instance, an energy-efficient protocol which relies on duty 

cycling of spatio-temporal sensing activities may result in application performance 

degradation for the sake of longer network lifetime.  

This review is more focused towards identifying the potential of various alternate 

energy sources and the different efforts on their efficient utilization. Networks wide energy 

efficient protocol can better manage its operation while taking into account the nodes’ supply 

and consumption. Research can consider both, the energy supply as well as the energy 

consumption in parallel while designing an energy efficient algorithm. Alternative energy 

sources from ambient environment and wireless transference based algorithms still require 

further improvements. Existing sources requires improvement regarding their energy 

harvesting efficiencies as well considering the possibility of exploring new sources. A hybrid 

technique comprising all the three existing sources (batteries, ambient environment, and 

wireless transfer) can also be considered to increase the network lifetime. 

The comparison of energy consumption between chain, grid and random topologies 

was studied in (Qiong et al., 2013) the comparison revealed that grid topology had the highest 

energy consumption followed by random and chain topologies. Chain topology also showed 

better packet delivery rate than the other infact, grid topology had the most performance in 

both energy consumption and packet rate. 

  

2.7.4. Consensus-based sparse signal reconstruction algorithm for wireless sensor network 

Average –consensus algorithm have lately investigated as a family of low-complexity 

interactive distributed algorithms where a sensors in a group communicate with each other to 

reach consensus. In a more detail, each sensor receives information from others and adjusts 
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their own information state with the goal to reach an agreement in a scalable and fault-

tolerant manner. Consensus was initially elaborated in (TsitSikklis el al 2013).and has 

received a considerable attention in many subjects due to its wide range of applications such 

as load balancing in parallel calculation, coordination of autonomous agents, distributed 

control and data fusion. 

A distributed sparse signal reconstruction algorithm using probabilistic graphical models in 

the Bayesian framework. First the three global information quantities are particularly 

designed for distributed sparse Bayesian inference by centralized update equations. Then, 

several average-consensus iteration is needed to reach a consensus on global information 

quantities in each local variational Bayesian (VB) step. 

In comparison with the centralized VSBL algorithm, this algorithm allows each sensor to 

parallelly reconstruct sparse signal with local information and moderate inter-node 

communication. 

Most recent developed Green Distributed signal reconstruction algorithm in WSN is shown 

below; IEEE Access 2016.on which it form the basis of this study. 

1: Initialization:  𝑆𝑧,0|−1
𝑖 = 𝑆0, 𝑥𝑖,0|−1 = 𝑥0|−1, 𝑗 ∈ 𝒩𝑖⋃{𝑖}. 

2: Compute the square-root of the information contribution matrix  𝑆𝒯𝑖,𝑘[1] = 𝐻𝑖,𝑘
𝑇 𝑆𝑅𝑖,𝑘

−1   of 

sensor node i and 𝑈𝑖,𝑘 = 𝑆
𝒯𝑖,𝑘

[1]  

3: Compute the information contribution vector and transmits it to the fusion centre; 𝑡𝑖,𝑘 =

𝐻𝑖,𝑘
𝑇 𝑦𝑖,𝑘  𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒 𝑖 and 𝑢𝑖,𝑘 = 𝑡𝑖,𝑘 

4: Independently perform average consensus on 𝑢𝑖,𝑘 = 𝑢𝑖 

5: For 𝒯 = 1, … … , 𝑇𝒯 𝐝𝐨 

6: Send message 𝑚𝑠𝑔𝑖{𝑢𝑖,𝑘,𝑈𝑖,𝑘} to neighbor nodes 

7: update: 
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𝑢𝑖(𝒯 + 1) =  𝑢𝑖(𝒯) + ∑ (𝑢𝑗(𝒯) − 𝑢𝑖(𝒯))

𝑁

𝑗=1

 

𝑈𝑖(𝒯 + 1) = 𝑈𝑖(𝒯) + ∑ (𝑈𝑗(𝒯) − 𝑈𝑖(𝒯))

𝑁

𝑗=1

 

9: end for 

𝑡̂𝑘 = 𝑢𝑖,𝑘 

𝑆̂
𝒯𝑘

[1] = 𝑈𝑖,𝑘 

10: Compute the local measurement update using  

𝑆̂𝑧,𝑘|𝑘
− = [𝑞𝑟 ([𝑆̂𝑧,𝑘|𝑘−1

1 𝑆̂
𝒯𝑘

[1]]
𝑇

)]
𝑇

 

𝑥𝑖,𝑘|𝑘
− = 𝑥𝑥,𝑘|𝑘−1 

+(𝑆̂𝑧,𝑘|𝑘
𝑖 )

−𝑇
(𝑆̂𝑧,𝑘|𝑘

𝑖 )
−1

(𝑡̂𝑘 − 𝑆̂
𝒯𝑘

[1]𝑥̂𝑖,𝑘|𝑘−1 ) 

11: Compute the local pseudo-measurement update using  

𝑆𝑧,𝑘|𝑘
𝑖 = [𝑞𝑟 ([(𝑆̂𝑧,𝑘|𝑘

𝑖 𝑆̅
𝒯𝑖,𝑘

[2])]
𝑇

)]

𝑇

Minus 

𝑥𝑖,𝑘|𝑘 = (𝐼𝑛 − (𝑆𝑧,𝑘|𝑘
𝑖 )

−𝑇
(𝑆𝑧,𝑘|𝑘

𝑖 )
−1

𝑆̅
𝒯𝑖,𝑘

2 𝑆̅
𝒯𝑖,𝑘

[2]
𝑇 ) 𝑥𝑖,𝑘|𝑘

−  

12: Compute the time update using 𝑥𝑗,𝑘|𝑘
𝑖 = (𝑆𝑧,𝑘|𝑘

𝑖 )
−𝑇𝜉𝑗+𝑥̂𝑖,𝑘|𝑘  

Minus   𝛾𝑘+1|𝑘
𝑖∗ =

1

√2𝑛
[𝜒1,𝑘+1|𝑘

𝑖∗ − 𝑥𝑙,𝑘+1|𝑘,𝑥2,𝑘+1|𝑘
𝑖∗ − 𝑥𝑙,𝑘+1|𝑘 … … … , 𝑥2𝑛,𝑘+1|𝑘

𝑖∗ − 𝑥𝑖,𝑘+1|𝑘] 

2.7.5 Signal Fusion and Data Communication Protocols 

Signal fusion can play a supporting role or a leading role. In the former, we have Signal 

fusion acting as a tool to assist the communication protocol establishment, whereas in the 

latter, the communication protocols are designed to support an signal fusion application (e.g., 

data aggregation target tracking).  

Information fusion is a promising tool to support different tasks in WSNs MAC protocols has 

used information fusion techniques intensively. Fuzzy logic is used by Wallace et al. [2005] 
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and Liang and Ren [2005b] to define nodes’ duty cycle in the MAC layer. Wallace et al. 

[2005] propose a fuzzy-based approach that- based on nodes’ transmit-queue size, residual 

energy, and collision rate-defines the nodes’ duty cycle so that nodes with high transmit 

queue have priority to access the medium. Moving average filters have been used by MAC 

protocols with different purposes such as: estimating ambient noise to determine whether the 

channel is clear [Polastre et al.2004]; local clock synchronization for contention purposes 

[Rhee et al. 2005]; and ACM Computing Surveys, Vol. 39, No. 3, Article 9, Publication date: 

August 2007. Article 9 / 40 E. F. Nakamura et al. detecting incipient congestion for fair and 

efficient rate control [Rangwala et al. 2006]. Kalman filters have been used to predict the 

frame size, avoiding the transmission of large frames whenever possible [Ci et al. 2004; 

Raviraj et al. 2005; Ci and Sharif 2005]. We can also point out some routing solutions that 

use information fusion searching for improved performance. Fuzzy logic has been used to 

decide the nodes participating in the routing path [Liang and Ren 2005a; Srinivasan et al. 

2006]. In order to improve the network lifetime, Liang and Ren [2005a] use fuzzy logic to 

evaluate different parameters- such as battery capacity, mobility, and distance to the 

destination - and choose the nodes to be included in the routing path. Woo et al. [2003] use 

moving average filters within adaptive link estimators so that link connectivity statistics are 

exploited by routing protocols to reduce packet losses. Nakamura et al. [2005b] use the 

moving average filter to estimate the data traffic of continuous WSNs, and that estimate is 

further used to detect routing failure by means of the Dempster-Shafer inference. The SCAR 

algorithm [Mascolo and Musolesi 2006] uses the Kalman filter to predict context information 

(mobility and resources) about its neighbors, and choose the best neighbor for routing its 

data. Hartl and Li [2004] use maximum likelihood to estimate per-node loss rates during the 

aggregation and reporting of data from sources to sink nodes, which can be used to bypass 

lossy areas. Localized algorithms, wherein nodes make decisions based on neighbors’ 
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information (e.g., link quality, residual energy, connectivity, and mobility), can take 

advantage of dual prediction schemes to reduce communication. In this scheme, two neighbor 

nodes simultaneously apply a predictive estimator (e.g., the Kalman filter) so that a node only 

exchanges data when it knows its parameters are not being correctly predicted by its 

neighbor. Furthermore, besides using information fusion methods to estimate parameters, 

such as residual energy, inference techniques can also be used to make decisions. For 

instance, MAC protocols may use the Bayesian inference or neural networks to accurately 

decide whether or not it is worth trying to transmit data given the current link quality, 

resources, and QoS requirements. To determine whether or not the applicability of fusion 

methods in such situations is feasible, we must evaluate the computational cost of the fusion 

algorithms, the resultant delay, the energy consumed, and the impact on the quality of the 

service provided by communication protocol. Information Fusion for Wireless Sensor 

Networks Article 9 / 41 in data aggregation applications, a sink node is interested in 

collecting aggregated data from a subset of nodes. In this context, data communication should 

use as few nodes and resources as possible to ensure the delivery and aggregation of data 

generated by source nodes. This is essentially an NP-complete problem similar to the Steiner 

tree; some heuristics have been proposed for that problem. Three heuristics are evaluated by 

Krishnamachari et al. [2002]: the centered-at-nearest-source tree (CNS), the shortest-path tree 

(SPT), and the greedy incremental tree (GIT). In the CNS, each source sends its data directly 

to the source closest to the sink; in the SPT, each source sends its data to the sink along the 

shortest path between both nodes; and in the GIT, the routing tree starts with the shortest path 

between the sink and the nearest source, and at each step after that, the source closest to the 

current tree is included in the tree. As Krishnamachari et al. [2002] show, the GIT heuristic is 

the best of the three. However, its distributed version [Bauer and Varma 1996] demands a lot 

of communication and memory usage, because every node needs to know its shortest paths to 



41 
 

the other nodes in the network. Motivated by that infeasible cost, Nakamura et al. [2006] 

propose the InFRA heuristic, which finds the shortest paths that maximize data aggregation, 

and has an O(1)-approximation ratio. Zhu et al. [2005] present a heuristic, called Semantic/ 

Spatial Correlation-aware Tree (SCT), that is constructed during the course of a query 

delivery. The SCT builds a fixed aggregation backbone that simplifies the generation of 

efficient aggregation trees, and is independent of source distribution and density. However, in 

contrast to the InFRA heuristics [Nakamura et al. 2006], the SCT needs to be pro-actively 

rebuilt, leading to energy waste. For the same problem, Ding et al. [2003] propose a tree-

based routing algorithm based on nodes’ residual energy, so that nodes with more energy are 

likely to perform data aggregation and routing. Once the tree is built, leaf nodes are turned off 

to save energy, but no approximation ratio is provided for this heuristic. Another approach to 

the aforementioned problem is the use of role assignment algorithms to define which nodes 

are to be used and what actions those nodes should take. Bhardwaj and Chandakasan [2002] 

derive upper bounds on the lifetime of WSNs that perform information fusion by assigning 

roles (sensor, relay, and aggregator), and modeling the optimal role assignment as a linear 

problem to find the assignment that maximizes the network lifetime. By computing a user-

defined cost function, Bonfils and Bonnet [2003] propose an adaptive and decentralized 

solution that progressively refines the role assignment. The SPRING algorithm [Dasgupta et 

al. 2003] for mobile sensor networks defines two roles (sensor and relay/aggregator), and 

places nodes and assigns roles to them so the system’s lifetime is maximized and the region 

of interest is covered by at least one sensor node. In the DFuse framework [Kumar et al. 

2003], role assignment is provided by a heuristic in which a tree with a naive role assignment 

is created, then nodes exchange health information, and the role is transferred to the neighbor 

with the best health regarding a given cost function. Frank and R¨omer [2005] propose a 

basic structure for a generic role assignment framework with applications for coverage, 
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clustering, and in-network aggregation. Similarly to the filter approach of Directed Diffusion, 

the network designer should specify roles and assignment rules. When we have information 

fusion as a leading role, source selection and route selections are problems of major concern. 

Taking target tracking applications based on particle filters as an example, selecting good 

particles (samples) for estimating a target’s trajectory is challenging because the fewer 

particles the cheaper the computation. In this context, Zhao et al. [2002a; 2003a] propose an 

information-directed approach in which sources and communicating nodes are chosen by 

dynamically optimizing the information utility of data for a given cost of communication and 

computation. Chen et al. [2006c] propose the Energy-Efficient Protocol for Aggregator 

Selection (EPAS) for selecting nodes that perform information fusion. The authors derive the 

ACM Computing Surveys, Vol. 39, No. 3, Article 9, Publication date: August 2007. Article 9 

/ 42 E. F. Nakamura et al. optimal number of aggregators, and present fully distributed 

algorithms for the aggregator selection. A key contribution is that these algorithms are 

independent of routing protocols. Chen et al. [2006b] use a cluster-based communication 

architecture, based on LEACH [Heinzelman et al. 2000], wherein data aggregation runs 

parallel to the cluster-heads, improving the energy efficiency via Meta data negotiation. In 

addition, for each event and each cluster, only one of the cluster members is selected to send 

data to the cluster-head. Zhou et al. [2004] use Directed Diffusion to provide a hierarchical 

aggregation scheme for WSNs to improve reliability and provide more applicable data 

aggregation. 

2.8. CONCEPTUNAL FRAMEWORK. 

The sensor node is largely deployed within or near the monitored area through artificial 

arrangement as shown in the figure 2.8.1. each sensor node are statically and randomly 

distributed in particular area Data through a simple processing jumping to transfer between 

neighboring nodes, monitoring data can be processed by multiple test nodes during 
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transmission, to arrive at sink nodes after multiple hops posterior. Sink nodes transfer a 

network through transmission network, and finally transfer a collected data to a remote 

information processing center. Fig I below is the sensor network structure, which includes 

sensor nodes, sink nodes and information processing centre, etc 

 

Fig 2:8:1. Framework of WSN 

Consider a network employing the sensors which observe linear combination of sparse state 

from a general nonlinear dynamical system described from equation; 

𝑥𝑘+1 = 𝑓(𝑥𝑘) + 𝑣𝑘        (4:1)   

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑤𝑘        (4:2) 

 Here, 𝑥𝑘 denotes a time varying state vector which is sparse in some transform domain, i.e. 

𝑥𝑘 = Ψsk where the majority of the components of 𝑠𝑘 are zero and Ψ is an appropriate basis. 

Without a loss of generality, it has been assumed that 𝑥𝑘 itself is sparse, having at most K 

nonzero components with unknown locations (𝐾 ≪ 𝑁).at time k, the observation at sensor i 

is𝑦𝑖,𝑘 = 𝐻𝑖,𝑘𝑥𝑘 + 𝑤𝑖,𝑘Where 𝐻𝑖,𝑘 ∈ 𝑅𝑝𝑖×𝑛  is the local observation matrix for sensor i,pi is the 

number of simultaneous observation made by sensor i at time k, and  𝑤𝑖,𝑘𝜖𝑅𝑝𝑖 is the 

observation noise. 
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  𝑦1,𝑘              𝑞2,𝑘……… ……….  …..                                                                   

                                𝑞1,𝑘  Feedback     𝑞1,𝑘 
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Figure 2:8:2.Conceptual framework 

 

The goal of the WSN is to form an estimate of sparse signal  𝑥𝑘  at the fusion centre. Due to 

energy and bandwidth constrains, the observed analog measurements needs to be 

quantized/coded before sending them to the fusion center. Moreover, the quantized 

innovation scheme also can be used. At time k, the  𝑙𝑡ℎ sensor observes a measurement 𝑦𝑙,𝑘 

and computes the innovation𝑒𝑙,𝑘 = 𝑦𝑙,𝑘 − ℎ𝑙𝑋̂𝑘|𝑘−1, where  ℎ𝑙𝑋̂𝑘|𝑘−1 together with the 

variance of innovation 𝐶𝑜𝑣[𝑒𝑙,𝑘]  is received from the fusion center. Then; the innovation  

𝑒𝑙,𝑘 is quantized to  𝑞1,𝑘 and sent to fusion center. As the fusion center has enough energy and 

enough transmission bandwidth, the data transmitted by the fusion center do not to be 

quantized. The decision of which sensor is active at time k and consequently which 

observation innovation 𝑒𝑙,𝑘 gets transmitted depends on the scheduling algorithm. The 

quantized transmission of 𝑒𝑙,𝑘 also implies that  𝑞1,𝑘 can be viewed as a nonlinear function of 

the sensor’s analog observation. As shown in the above conceptual framework. 

 

 

 

     Process  𝑥𝑘   
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CHAPTER THREE 

METHODOLOGY 

3.0. INTRODUCTION 

This chapter comprises of research design, research Instrument, Validity and reliability of the 

instrument, Data collection procedure and Data processing and analysis.  

3.1. RESEARCH DESIGN 

3.1.1. Bayesian Estimation and Kalman filters. 

We provide a self-contained derivation of Bayesian estimation results leading to the Kalman 

filter with emphasis on conceptual simplicity to solve non-linear problem in a distributed 

WSNs. The problem of interests concerns the estimation of an observed discrete-time random 

signal in a dynamic system (state of the system) State equation model the evolution in time of 

state as a discrete-time stochastic function. In general; 

𝑥𝑘 = 𝑌𝑘−1(𝑥𝑡−1, 𝑆𝑚) 

𝑌𝑘−1 is known possibly nonlinear. A function of the state 𝑥𝑘 and 𝑆𝑚 is referred to as Process 

noise which filter any mismodelling effect on distribution in the state characterization. 

The relation between measurement and the state is modeled by; 

𝑆𝑡 = 𝑞𝑘(𝑥𝑡, 𝑛𝑡) 

Both process and measurements noise are assumed with known statistics and mutually 

independent. The filtering problem involved in the Bayesian estimation can be solved 

analytically. 

3.1.2. Experimental Results. 

Experiment setting. 

Through simulation of a wireless sensor network Algorithm to demonstrate the performance 

of the algorithm for distributed WSNs, A sensor network with 6 nodes is considered without 

the loss of generality. The network is represented by an undirected graph 𝒢 = (𝒱, ℰ, 𝒜) with 

sets of nodes 𝒜 = (1,2,3,4,5,6),the set of edges ℰ =
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{(1,1), (1,2), (1,3), (2,3), (2,4)(2,5), (3,3), (3,5), (3,6)(4,4), (4,5), (5,5), (5,6), (6,6)}, and 

the adjacency. 

3.2. TARGET POPULATIONS 

3:1:1.Expert Opinion 

Collection of data is by expert opinion. This non-probabilistic exercise where opinion are 

gathered. “Expert knowledge” is what qualified individuals know as a result of their technical 

practices, training, and experience (Booker and McNamara 2004). It may include recalled 

facts or evidence, inferences made by the expert on the basis of “hard facts” in response to 

new or undocumented situations, and integration of disparate sources in conceptual models to 

address system-level issues (Kaplan 1992 ) .Experts are usually identified on the basis of 

qualifications, training, experience, professional memberships, and peer recognition (Ayyub 

2001 ) .1 

Bogner and Menz (formulate this as follows: “An expert has technical, process and 

interpretative knowledge that refers to a specific field of action, by virtue of the fact that the 

expert acts in a relevant way (for example, in a particular organizational field or the expert’s 

own professional area). In this respect, expert knowledge consists not only of systematized, 

reflexively accessible knowledge relating to a specialized subject or field, but also has to a 

considerable extent the character of practical or action knowledge, which incorporates a 

range of quite disparate maxims for action, individual rules of decision, collective 

orientations, and patterns of social interpretation. An expert’s knowledge, his/her action 

orientations etc., also (and this is decisive) point to the fact that s/he may become hegemonic 

in terms of practice in his/her field of action (for example, in a certain organizational 

functional context). In other words, the possibility exists that the expert may be able to get 

his/her orientations enforced (at least in part). As the expert’s knowledge has an effect on 
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practice, it structures the conditions of action of other actors in the expert’s field in a relevant 

way.”  

3:2:2.Selection of Experts 

The selection process involves identification of the expertise that will be relevant to the 

elicitation process, and selection of the subset of experts who best fulfill the requirements for 

expertise within the existing time and resource constraints. In some cases, the selection of 

appropriate experts is straightforward, but in other cases, an appropriate expert group will 

need to be defined by the researcher according to the experts’ availability and the 

requirements of the elicitation. I considered explicit criteria to ensure transparency, and to 

establish that the results represent the full range of views in the expert community. Common 

metrics for identifying experts include qualifications, employment, memberships in 

professional bodies, publication records, years of experience, peer nomination, and perceived 

standing in the expert community which  core consideration during this process(e.g., 

Chuenpagdee et al. 2003 ; Drescher et al. 2008 ; Whitfield et al. 2008 ; Czembor and Vesk 

2009 ) . Additional considerations include the availability and willingness of the experts to 

participate, and the possibility of conflicts of interest. 

The appropriate number of experts depends on the scope of the problem, the available time 

and other resources, and the level of independence between experts. Experts often share 

beliefs because of shared information sources and training. In such cases, the marginal 

benefits of including more than about five to eight experts decrease quickly (Winkler and 

Makridakis 1983; Clemen and Winkler 1985). As a result, I included a diverse a range of 

experts as possible. I will contact multiple experts to buffer against individual mistakes and 

biases, and to allow for assessments that are representative of the whole expert community 

(Hokstad et al. 1998; Clemen and Winkler 1999; Armstrong 2006). 
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3:3.SAMPLING AND SAMPLING PROCEDURE 

Literature on both forms of interview, that is interviews with the elite and interviews with 

experts often focuses on the issues of sampling, the specific access problems faced and the 

challenges of conducting the interviews for example (Dexter, 2006/1969, Moyser and 

Wagstaffe, 1987, Vogel, 1995, Odendahl and Shaw, 2002, Welch and others, 2002, Lilleker, 

2003 and the articles in Bogner and others, 2005). 

3:3:1.Sampling 

Sampling does not adhere to quantitative conceptions of representativeness, since there is no 

clearly defined pool of experts and members of the elite from which a sample might be 

chosen in line with specific guidelines. Indeed, the attributed expert or elite status is more 

often set by the actual field of research and research goals. As Meuser and Nagel (2005, p. 

73) note, researchers to a certain extent attribute expert status that is limited to a specific area 

of research. Welch (and others, 2002, p. 613) also describe the attribution of elite status to 

certain individuals in a similar manner, namely in relation to the research questions 

3.4. RESEARCH INSTRUMENTS 

3:3:1.Expert interview 

Data were obtained from self administered expert opinion, there is no iron-clad rule about 

how many experts are enough however it is important to conduct as many as possible 

depending on the topics of interest that are relevant to answering of the research questions. 

See the table 4:2:1.below. 
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Expert Name/Contacts 

 

 

Field of expertise 

Place of 

Interview/time & 

Date 

 

 

Subject. 

1. Gilbert B.Mugeni,Ph.D 

gmugeni@yahoo.co.uk 

Manager, Data 

management & 

Documentation 

Frequency Spectrum 

Management 

CAK offices, 

Waiyaki way. 19th 

,Sept.2017 

Spectrum 

Management and 

WSN 

2. Eran Hadad 

ehadad@mmm.com 

3M Electronic 

Monitoring ltd 

3M Traffic, safety & 

Security Division 

 

Tel Aviv 6583 

office, 

Israel(Telephone 

conversation) 25th 

,Sept.2017 

Wireless Sensor 

Monitoring 

3. Dr.Feben Gobena 

ftgobena@mmm.com 

3M AFRICA. General 

manager Government 

Affairs and Market 

Victoria Tower, 

Victoria Tower, 

Upper Hill office 

26th ,Sept.2017 

Security 

Surveillance in 

African Penal 

Institution & 

policy issues 

4. Guy Johananoff 

gjohananoff.cw@mmm.com 

3M Electronic 

Monitoring ltd 

3M Traffic, safety & 

Security  

Manager. 

2 Habarzel st,6489 

Office 

Serena Hotel, 26th 

,Sept.2017 

WSN ,IoT and 

Energy 

5. Andrew Ngugi 

www.axis.com 

Axis Communication 

Kenya. Engineer 

Delta corner Tower 

westlands 7th floor 

office 709 29th 

,Sept.2017 

Intelligent system 

Surveillance 

6. Mr. J.M.kodieny ,OGW 

(SDCP)  

Dir.Operation Prisons Prisons 

Headquarters 

Magreza Hse, 

Bishop Road. 

Prisons Security. 

and Technology 

7. Emanuel Mugo 

emugo@gmail.com 

Kenya Prisons ICT 

Manager 

 

Prisons 

Headquarters 

Magreza 

Hse,Bishop Road 

ICT infrastructure 

8. Mr. Wamyama 

wamyamadw@gmail.com 

Former Chief 

Telecommunication 

Engineer Prisons Hqs. 

Kengele’s 

Restaurant 

westlands. 29th 

,Sept.2017 

Wireless 

Communication 

infrastructure 

  

Table 4:1:1.Table of Experts 

N/B.The Interactive Interview (through expert opinion) is based on the assumption that the 

discussion with the respondents (researcher) is a learning process that continues throughout 

the field work. Daily interpretive analysis (DIA) was itself a potentially valuable learning tool 

because it forced me to reflect on what has been learned. Such reflections positively informed 

subsequent interviews that we carried out.   
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The explication and reconstruction of these different forms of knowledge and their practical 

consequences form the focus of expert interviews and their subsequent analysis (cf. the 

articles in Bogner and others, 2005).  

3.5. VALIDITY AND RELIABILITY OF THE INSTRUMENT. 

3.4.1. Validity and Reliability 

Indeed, issues of validity and reliability of research instruments are of great of great 

significance to the findings of any scientific research. Moreover, as Dornyei (2007) adds, 

validity and reliability issues serve as guarantees of the results of the participants’ 

performances. In its broader context, validity refers to the degree to which a study reflect the 

specific concepts it aims to investigate. Two types of validity are discussed in social science 

literature: internal and external (Berg, 2007). Internal validity refers to the extent to which an 

investigation is actually measuring what it is supposed to measure. This type of validity 

answers the question: Are the differences found related to the measurement? While external 

validity answers the question: Can the findings be generalized? Yet, in order to maintain this, 

researchers should consider a number of factors. Cohen et al (2007) propose the following 

factors which may lead to higher validity by minimizing the possibility of bias: 

a)  The attitude, views and prospects of the interviewer; 

b) A tendency for interviewer to see the interviewee on his/her own merits;  

c) A tendency for interviewers to seek answers to support their preconceived notions; 

d) Misperceptions on the part of the interviewer with regard to what the interviewee is 

saying; and 

e) Misunderstanding on the part of the interviewee with regard to what is being asked. 

On the other hand, reliability refers to the extent to which a research instrument yields the 

same results on repeated trials. Yet, Brewerton and Millward (2001) justifiably argue that 

interviews have poor reliability: “…due to their openness to so many types of bias, interviews 
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can be notoriously unreliable, particularly when the researcher wishes to draw comparisons 

between data sets”. In line with this, Creswell (2009 :) claims that interviewing reliability is 

‘elusive’ and he even adds that “no study reports actual reliability data”. In sum, researchers 

should follow techniques that would help maintaining the validity and reliability of 

interviewing. These can be: 

a) Avoiding asking leading questions 

b) Taking notes not just depending on tape recorders 

c) Conducting a pilot interview; and giving the interviewee a chance to sum up and 

clarify the points they have made. 

d) Experts are asked to review their judgments, consider alternatives, and verify or 

change their judgments if they wish. Experts are given an opportunity to review the 

outputs of any model or final representation, such as a graphical representation of the 

probability distribution constructed from their responses, to ensure that this result 

represents a reasonable reflection of their beliefs. Actively questioned the expert, and 

provided examples of their responses in multiple formats to prompt the expert to 

reconsider their statements in a new light. 

3.6. DATA PROCESSING AND ANALYSIS. 

3.6.1. Mathematical Induction 

We use mathematical induction mainly a tool for explaining and designing algorithm. This 

has been done by many researchers and scholars’ including (Dijikastra 1976), (Manna 1980), 

(Gries 1981) (Dershows 1983) and (Paul 1988) among many others. The significance of the 

approach is to first collect seemingly different technique of algorithm design into one 

umbrella and second to utilize known mathematical proof technique for algorithm design. 
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CHAPTER FOUR 

EXPRIMENTATIONS, FINDING AND DISCUSSION 

4.0. Introduction. 

This chapter presents the systematic look of the research questions, analysis of the result of 

experimentation followed by a discussion of the research findings.  

4.1. DISTRIBUTED NONLINEAR STATE ESTIMATION PROBLEMS IN 

WSNS. 

Algorithms for WSNs are investigated in the literature review, Therefore in this section we 

investigate distributed non linear state estimation problem in WSNs and there solutions. 

4.1.1. The problem statement 

Given a nonlinear dynamic system, estimate the hidden state of the system in a recursive 

manner by processing a sequence of noisy observations dependent on the state. The Bayesian 

filter provides a unifying framework for the optimal solution of this problem, at least in a 

conceptual sense. 

1. System (state) Model 

𝑋𝑡+1 = 𝑎(𝑋𝑡) + 𝜔𝑡  (Refer to eqn 4:1Conceptual framework) 

2. Measurement model  

                𝑦𝑡 = 𝑏(𝑋𝑡) + 𝑣𝑡  (Refer to eqn 4:2 Conceptual framework) 

   Where  𝑡 = discrete time 

                                                𝑋𝑡 = State at time 𝑡 

                                                𝑦𝑡 = Observation at time t 

                                                𝜔 = Dynamic noise 

    𝑣𝑡 = Measurement 

Assumption: 

 Nonlinear function a (∙) and b (∙) are known 
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 Dynamic noise  𝜔𝑡 and measurement noise 𝑣𝑡 are statistically independent Gaussian 

processes of zero mean and known covariance matrices. 

1. Time-update equation: 

𝑃(𝑋𝑡|𝑌𝑡−1) =  ∫𝑅𝑛𝑃(𝑋𝑡|𝑋𝑡−1)𝑃(𝑋𝑡−1|𝑌𝑡−1)𝑑𝑋𝑡−1 

𝑃(𝑋𝑡|𝑌𝑡−1) - Predictive distribution. 

∫𝑅𝑛𝑃(𝑋𝑡|𝑋𝑡−1) -  Prior distribution. 

𝑃(𝑋𝑡−1|𝑌𝑡−1)𝑑𝑋𝑡−1 - Old posterior distribution. 

Where 𝑅𝑛 denotes the 𝑛- dimensional state space. 

2. Measurement-update equation: 

𝑃(𝑋𝑡|𝑌𝑡) =
1

𝑍𝑡
  𝑃(𝑋𝑡|𝑌𝑡−1)𝑙(𝑦𝑡|𝑋𝑡) 

𝑃(𝑋𝑡|𝑌𝑡)   - Updated posterior distribution. 

𝑃(𝑋𝑡|𝑌𝑡−1) - Predictive distribution. 

𝑙(𝑦𝑡|𝑋𝑡)  -  Likelihood function. 

Where 𝒁𝒕 is the normalizing constant defined by, 

𝑍𝑡 = ∫𝑅𝑛𝑃(𝑋𝑡|𝑌𝑡−1)𝑙(𝑌𝑡|𝑋𝑡)𝑑𝑋𝑡 

The celebrated Kalman filters is a special is a special case of the Bayesian filter, assuming 

that the dynamics system is linear and both the dynamic noise and measurement noise are 

statistically independently processes. 

Except for this special case and couple of other cases, exact computation of the predictive 

distribution 𝑃(𝑋𝑡|𝑌𝑡−1) is not feasible. 

We therefore have to abandon optimality and be content with a sub-optimal nonlinear 

filtering algorithm that is computationally tractable. 

Nonlinear problem geometries often assume that the measurements are related to the state 

using the nonlinear relation  𝑍𝑛 = ℎ𝑛(𝑋𝑛) + 𝑁𝑛.( Refer conceptual framework  egn 4:2) With 

this non linear form of the measurement model employed, the current optimal estimate can 
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only approximately be represented as a linear combination of the measurement. The usual 

procedure is either to iterate the solution until acceptable accuracy is obtained or simply 

ignore the partial derivatives of ℎ𝑛(𝑋𝑛) that is higher than the first. 

A new approach to nonlinear filtering with correlated measurement noise is presented on this 

research. This approach, using pseudo state measurements, differs from the usual approach of 

the extended Kalman filter. The latter approach requires the computation of nonlinear 

residuals and uses nonlinear propagation of the state. The approach defined in this study uses 

a nonlinear transformation of the actual measurements and the a priori state variables to 

obtain pseudo state measurements. 

Roots embedded in Monte Carlo simulation computationally demanding the Cubature 

Kalman Filter which is the basis for nonlinear solution in this study. At the heart of the 

Bayesian filter, we have to compute integral whose integrands are expressed in the common 

form. 

(Nonlinear function) X (Gaussian function) 

The challenge is to numerically approximate the integral so as to completely preserve second-

order information about the state 𝑋𝑡 that is contained in the sequence of observations 𝑌𝑡 

The computational tool that accommodates this requirement is the cubature rule. In 

mathematical terms, we have to compute an integral of the generic form. 

ℎ(𝑓) =  ∫𝑅𝑛𝑓(𝑋)𝑒𝑥𝑝 (−
1

2
𝑋𝑇𝑋) 𝑑𝑋 

𝑓(𝑋) Arbitrary nonlinear function. 

𝑒𝑥𝑝 (−
1

2
𝑋𝑇𝑋) Normalized Gaussian functions of zero mean and unit covariance matrix. 

To do the computation, a key step is to make a change of variable from the Cartesian 

coordinate system (in which the vector x is defined) to a spherical radial coordinate system: 

𝑋 = 𝑟𝑍 Subject to 𝑍𝑇𝑍 = 1 and 𝑋𝑇𝑋 = 𝑟2 where 0 ≤ 𝑍 < ∞ 

The next step is to apply the radial rule using the Gaussian quadrature. 
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The pseudo-measurement equation is interpreted from the Bayesian perspective, and semi-

Gaussian prior distribution discussed 

For the system given in eq. (4:1) and eq. (4:2), it is well-known that Kalman filtering can 

provide an estimation of 𝑥𝑘 which is equivalent to the solution of the following unconstrained 

ℓ2 minimization problem. 

min
𝑥̂𝑘∈𝑅𝑛

𝐸𝑥𝑘 |𝑦1 ⋯ , 𝑦𝑘[‖𝑥𝑘 − 𝑥̂𝑘‖2
2 ]|                             (4:8) 

Where; 

 𝐸𝑥𝑘|𝑦1,⋯,𝑦𝑘|[∙]  is the conditional expectation of the given measurements? {𝑦1, ⋯ , 𝑦𝑘}                      

Consider the following stochastic case; 

min
𝑥̂𝑘∈𝑅𝑛

‖𝑥̂𝑘‖1,𝑠, 𝑡. 𝑥𝑥𝑘|𝑦1,⋯,𝑦𝑘|[‖𝑥𝑘 − 𝑥̂𝑘‖2
2 ] ≤∈       (4:9) 

And its dual problem are discussed in the KF framework 

min
𝑥̂𝑘∈𝑅𝑛

𝐸𝑥𝑘|𝑦1,⋯,𝑦𝑘| [‖𝑥𝑘 , ⋯ , 𝑥̂𝑘‖2
2 ], ‖𝑥̂𝑘‖1≤∈                   (5:0) 

The constrained optimization problem is solved in the framework of Kalman filtering and the 

specific method summarized as a CS-embedded KF with ℓ1-norm constraint (CSKF). 

The CSKF is generalized and applied to nonlinear systems. In particular, a cubature Kalman 

filter is employed in place of the Kalman filter and the resulting algorithm is implemented in 

centralized manner. 

For a general nonlinear dynamical system, it is to abandon the optimal solution stated in the 

problem and to content with a suboptimal solution to Bayesian filter by using approximate 

methods. In case of compressive sensing applications, the state-space models are high-

dimensional with state-space models are high-dimensional with state-vector of size hundreds 

or more.However,the general nonlinear filter suffer from the curse of 

dimensionality.Fortunately,the CKF is recently developed for closest approximation to 

Bayesian filter and can be applied to solve high-dimensional nonlinear problems. Under the 
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Gaussians assumption, the multi-dimensional integral of the Bayesian filters solution are of 

the form 

𝐼(𝑓) = ∫ 𝑓(𝑥)
𝑅𝑛 𝑒𝑥𝑝(−𝑥𝑇𝑥)𝑑𝑥       (5:7) 

However, this multi-dimensional integral is typically intractable. The third degree spherical 

radial cubature rule is used to approximate the integral. This rule is used to approximate the 

integral. This rule uses the spherical radial transformation to change the variables from the 

Cartesian to the radial as:x = rz z with zTz = 1,such  that  xTx=r2 for 𝑟 ∈ [0, ∞).The integral 

equation (a) is then numerically approximated by 

𝐼(𝑓) ≈
√𝜋𝑛

2𝑛
∑ 𝑓 (√

𝑛

2
 𝜉𝑗)2𝑛

𝑗=1         (5:8) 

Where n is the dimensions of the vector x, and 𝜉𝑗 is the j-th cubature point located at the 

intersection of the surface of the surface of n-dimensional unit sphere and its axes. This rule 

can be extended to solve the prediction and posterior pdfs that are in the form of standard 

Gaussian with mean 𝑥̂  and the variance P. Hence, the cubature rule to approximate an n-

dimensioning Gaussian-weighted integral is as follows 

∫ 𝑓(𝑥)𝒩(𝑥; 𝑥,̂ 𝑃)𝑑𝑥 ≈
1

2𝑛𝑅𝑛 ∑ 𝑓(𝑥̂ + 𝑆𝑥𝜉𝑗)2𝑛
𝑗=1      (5:9) 

Where 𝑆𝑥 is a square-root factor of the covariance P satisfying the relation 𝑃 = 𝑃𝑃𝑃𝑃
𝑃; 𝑃𝑃  

is the j-th element of the cubature points set{𝑃𝑃} 

In particular, the system has an underlying state-space structure, where the state vector is 

sparse. in each time interval, the fusion center transmits the predicted signal estimate and its 

corresponding error covariance to a selected subset sensor. The selected sensors compute 

quantized innovation and transmit them to the fusion center. The fusion centre reconstructs 

the sparse state by employing the filter algorithm and sparse cubature point method. 
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4.2. WSN SIGNAL RECONSTRUCTION ALGORITHM 

In this section Distributed square root cubature information filtering with pseudo 

measurement embedded and Signal fusion center algorithms is developed for sparse 

estimation. It is worth noting that a fusion center is required to implement the state estimate 

and sparse constraint, when observations are distributed among the sensors. This is unique 

from the algorithm discussed in the literature review and forms the basis of this algorithm. 

This difference makes the information filter superior to the Kalman filter because no a priori 

about the system state is required. Moreover, the information filter can be easily decentralized 

and extended to multi-sensor fusion. 

 ALGORITHM  

1: Initialization:  𝑃𝑃,0|−1
𝑃 = 𝑃0, 𝑃̂𝑃,0|−1 = 𝑃0|−1, 𝑃 ∈ 𝑃𝑃⋃{𝑃}. 

2: Compute the square-root of the information contribution matrix  𝑃𝑃𝑃,𝑃[1] = 𝑃𝑃,𝑃
𝑃 𝑃𝑃𝑃,𝑃

−1   of 

sensor node i and 𝑃𝑃,𝑃 = 𝑃
𝑃𝑃,𝑃

[1]   

3: The fusion centre transmits 𝑃𝑃𝑃
(𝑃, 𝑃) which denotes the (𝑃, 𝑃) entry of the innovation 

error covariance matrix and predicted observation 𝑃̂𝑃,𝑃 to the 𝑃𝑃ℎ sensor 

 𝑃1|1
𝑃𝑃 = 𝑃𝑃|𝑃,𝑃̂1|1 = 𝑃̂𝑃|𝑃. 

𝑃𝑃
𝑃𝑃 =  [𝑃𝑃𝑃𝑃(𝑃̂1,𝑃|𝑃) … . 𝑃𝑃𝑃𝑃(𝑃̂𝑃,𝑃|𝑃)] 

𝑃𝑃𝑃 =
𝑃𝑃|𝑃

𝑃𝑃 𝑃𝑃
𝑃𝑃

𝑃𝑃
𝑃𝑃𝑃𝑃|𝑃

𝑃𝑃 (𝑃𝑃
𝑃𝑃)𝑃 + 𝑃𝑃

 

𝑃̂𝑃+1|𝑃+1 = 𝑃̂𝑃|𝑃 − 𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃̂𝑃|𝑃 

𝑃𝑃+1|𝑃+1
𝑃𝑃 = 𝑃𝑃|𝑃

𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃|𝑃

𝑃𝑃  

𝑃̂𝑃|𝑃 = 𝑃̂𝑃|𝑃,𝑃𝑃|𝑃 = 𝑃𝑃+1|𝑃+1
𝑃𝑃  

4: The 𝑃𝑃𝑃 sensor Compute the information contribution vector and transmits it to the 

fusion centre; 𝑃𝑃,𝑃 = 𝑃𝑃,𝑃
𝑃 𝑃𝑃,𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃 and 𝑃𝑃,𝑃 = 𝑃𝑃,𝑃 

4: Independently perform average consensus on 𝑃𝑃,𝑃 = 𝑃𝑃 
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5: For 𝑃 = 1, … … , 𝑃𝑃 𝐝𝐝 

6: Send message 𝑃𝑃𝑃𝑃{𝑃𝑃,𝑃,𝑃𝑃,𝑃} to neighbor nodes 

7: update: 

𝑃𝑃(𝑃 + 1) =  𝑃𝑃(𝑃) + ∑(𝑃𝑃(𝑃) − 𝑃𝑃(𝑃))

𝑃

𝑃=1

 

𝑃𝑃(𝑃 + 1) = 𝑃𝑃(𝑃) + ∑(𝑃
𝑃(𝒯) − 𝑃

𝑃(𝑃))

𝑃

𝑃=1

 

9: end for 

𝑃̂𝑃 = 𝑃𝑃,𝑃 

𝑃̂
𝑃𝑃

[1] = 𝑃𝑃,𝑃 

10: Compute the local measurement update using  

𝑃̂𝑃,𝑃|𝑃
−

= [𝑃𝑃 ([𝑃̂𝑃,𝑃|𝑃−1
1

𝑃̂
𝑃𝑃

[1]]
𝑃

)]
𝑃

 

𝑃̂𝑃,𝑃|𝑃
−

= 𝑃̂𝑃,𝑃|𝑃−1 

+ (𝑃̂𝑃,𝑃|𝑃
𝑃

)
−𝑃

(𝑃̂𝑃,𝑃|𝑃
𝑃

)
−1

(𝑃̂𝑃 − 𝑃̂
𝑃

𝑃

[1]𝑃̂𝑃,𝑃|𝑃−1
) 

11: Compute the local pseudo-measurement update using  

𝑃𝑃,𝑃|𝑃
𝑃 = [𝑃𝑃 ([(𝑃̂𝑃,𝑃|𝑃

𝑃
𝑃̅

𝑃𝑃,𝑃
[2] )]

𝑃

)]

𝑃

Minus 

𝑃̂𝑃,𝑃|𝑃 = (𝑃𝑃 − (𝑆𝑃,𝑃|𝑃
𝑃 )

−𝑃
(𝑃𝑃,𝑃|𝑃

𝑃 )
−1

𝑃̅
𝑃𝑃,𝑃

2 𝑃̅
𝑃𝑃,𝑃

[2]
𝑃

) 𝑃̂𝑃,𝑃|𝑃
−

 

12: Compute the time update using 𝑃𝑃,𝑃|𝑃
𝑃 = (𝑃𝑃,𝑃|𝑃

𝑃 )
−𝑃𝑃𝑃+𝑃̂𝑃,𝑃|𝑃  

Minus   𝑃𝑃+1|𝑃
𝑃∗ =

1

√2𝑃
[𝑃1,𝑃+1|𝑃

𝑃∗ − 𝑃̂𝑃,𝑃+1|𝑃,𝑃2,𝑃+1|𝑃
𝑃∗ − 𝑃̂𝑃,𝑃+1|𝑃 … … … , 𝑃2𝑃,𝑃+1|𝑃

𝑃∗ − 𝑃̂𝑃,𝑃+1|𝑃] 

4.3. Comments 

The information filter (IF) utilizes the information states and the inverse of covariance states 

and the inverse of covariance rather than the states and covariance, is the algebraically 

equivalent form of Kalman filters. The l1-norm constraint is enforced in a distributed manner 
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and the effectiveness enhanced by consensus update during the communication between the 

sensor nodes in the WSNs the derived square –root is lower triangular matrix using the QR 

decomposition. Therefore, the sparseness of square-root can reduce the storage space on 

sensor nodes and communication overhead in the WSN. 

4:4. EXPERIMENT/SIMULATIONS: 

In this section tests are performed using MATLab –morte Carlo simulation to test the 

performance of the algorithms in a fusion center based networks in which sparse signal are 

reconstructed from a series of a coarsely quantized observation. 

MATLAB-morte Carlo simulation 

To demonstrate the performance of the proposed algorithm for the distributed WSNs.A 

sensor network with 6 nodes is considered without the loss of generality. The network is 

represented by an undirected graph 𝑃 = (𝑃, 𝑃, 𝑃) with the set of nodes 𝑃 = (1,2,3,4,5,6), 

the set of edges𝑃 =

{(1,1), (1,2), (1,3), (2,3), (2,4), (2,5), (3,3), (3,5), (3,6), (4,4), (4,5), (5,5), (5,6), (6,6)}, and the 

adjacency. 

In the following simulations the states are estimated using 𝑃 = 200  time steps from 𝑃 = 50 

Monte- Carlo runs in Mat-lab. 

The average of normalized RMSE is employed to evaluate the performance of the proposed 

algorithm, which is defined as follows. 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑃) =
1

𝑃
∑

‖𝑃̂𝑃
𝑃

−𝑃𝑃
𝑃‖

2

‖𝑃𝑃
𝑃‖

2

𝑃
𝑃=1        (6:4) 

Where   𝑃𝑃
𝑃 and 𝑃̂𝑃

𝑃
 is the true and estimated state variable at discrete time k of the j-th Morte 

Carlo run: and M is the number of morte Carlo runs. The expression describes the average 

convergence process of the filtering algorithm for all simulation. For convenience, the 
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centralized SCIF-PM and the non square-root form of DSCIF-PM are referred as CSCIF-PM 

and DCIF respectively. 

 

FIGURE.4.10.1. ANRMSE of DSCIF-PM 

Fig 1.Presents the ANRMSE of all sensors indicating that all the local filters are stable and 

have reached an consensus on the estimate of the sparse signals. 

 

 

 

 

 

 

 

FIGURE 4.10.2. ANRMSE of CSCIF-PM and DSCIF-PM. 

Fig 2 gives the state estimate from sensor nodes using the DSCIF-PM at time k = 200.Surely, 

all sensors nodes are providing satisfactory estimate of the true sparse signal. 
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FIGURE 4:10:3.  Estimation of x 200  using DSCIF-PM. 

The performance of the DSCIF-PM and the CSCIF-PM in ANRMSE is compared. In fig 3.it can be 

seen that DSCIF-PM is showing comparable performance to the CSCIF-PM.it means that the sparsity 

constraint in a distributed manner is effective. 

Next, the performance of the DSCIF-PM and the DCIF-PM is compared 

 

FIGURE 4.10.4. ANRMSE of DSCIF-PM and DCIF-PM. 

Fig 4: 15:5.Shows, the ANRMSE of the DSCIF-PM and the DCIF-PM.Compared with 

DCIF-PM, the introduction of Square-root form has made the filter more stable and accurate. 
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FIGURE 4.10.5. Estimation of x200 using DCIF-PM. 

Fig.4:15:5. Gives the instantaneous estimate values from all sensor nodes using the DCIF-PM 

at time k =200.It is clearly shown that the DCIF-PM is erroneously sampling signal 

component in the zero-component region. 

To obtain the square root of matrix, the computational complexity of algorithm is up to 

0(𝑃2) following the similar treatment. 

4.4. Findings 

From the performance of the algorithm, Signal fusion center was found to be a critical 

improvement in designing a WSN.the reason is that information signal fusion was that it can 

used to extend the network lifetime, the signal fusion center employed in the design of the 

algorithm deals with multi dimensional signal from sensors that can ideal in real time 

applications. 

Compared to all other algorithms, algorithms based on signal reconstruction with signal 

fusion centre increased signal convergence rate hence reduced energy consumption, this 

reduced Multi sensor signal fusion offers increased reliability and high processing gain in 

overall performance signal with very low SNR hence high energy saving compared to other 

algorithms. 
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It was also noted that the performance is achieved with far fewer measurements than the 

unknowns(< 30%). In addition, only the square-root form of matrix, which is lower 

triangular matrix, is involved in the algorithm. It directly corresponds to the reduction in the 

energy consumption of the storage and the communication. 

It was demonstrated that the algorithm developed is effective with a far smaller number of 

measurements than the size of the state vector. This very promising in the WSNs with energy 

constraints, and the lifetime of WSNs was prolonged. 

4.5. SUMMARY 

In this Chapter, A Distributed signal reconstruction algorithm is developed by employing 

compressive sensing and consensus filter to solve as parse signal reconstruction issue in 

fusion centre WSNs with energy efficiate considered. In particular, ,the pseudo-measurement 

(PM) technology is introduced into the cubature Kalman filters (CKF),and a sparsity 

constraint is imposed on the nonlinear state estimation by CKF.In order to develop a 

distributed reconstruction algorithm to fuse the random linear measurement from the nodes in 

WSNs,the PM embedded CKF is formulated into the information form, and then derived 

information filter is combined with consensus filter, while the square-root version is further 

developed to improve the performance and strength power saving capability. 

The simulation result demonstrates that the sparse signal can be reconstructed with fewer 

nodes in decentralized manner and all the nodes can reach consensus, while providing some 

attractive benefit a to the green communication  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.0. Introduction. 

This chapter gives a summary of the research findings, the conclusions made thereof and the 

recommendations that the researcher provided on Green Distributed signal reconstruction 

Algorithm in WSNs. 

5.1. DISCUSSIONS 

A number of various KF-based distributed estimation algorithms have recently been 

proposed. In particular, the distributed Kalman Filter (DKF) using the dynamic average-

consensus strategies to the weighted measurements and the inverse-covariance matrices has 

been developed in and for linear system. Assuming the transfer matrices to be sparse and 

localized, an efficient distributed algorithm has been developed.  

Although distributed algorithms to achieve consensus have received a lot of attention as 

discussed in the literature review, because of their capability of reaching optimal decisions 

without the need of a fusion center, the price paid for this simplicity is that consensus 

algorithms are inherently iterative. As a consequence the iterated exchange of 

Data among the nodes might cause excessive energy consumption. Hence, to make consensus 

algorithms really appealing in practical applications, in this case it is necessary to minimize 

the energy consumption necessary to reach consensus. Signal based fusion center play a 

fundamental role in determining the convergence rate. Signals from different sensors are 

combined to create a new signal with a better signal to noise ratio than the original signal. 

As the network connectivity increases, so does the convergence rate. However, a highly 

connected network entails a high power consumption to guarantee reliable direct links 

between the nodes. On the other hand, if the network is minimally connected, with only 

neighbor nodes connected to each other, a low power is spent to maintain the few short range 

links, but, at the same time, a large convergence time is required. Since what really matters in 
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a WSN is the overall energy spent to achieve consensus, it was considered the problem of 

finding the signal fusion center that minimizes the overall energy consumption, taking into 

account convergence time and transmit powers jointly.kalman filters in the study is used to 

fuse low level redundant data,Multi sensor signal fusion offers increased reliability and high 

processing gain in overall performance signal with very low SNR (smaller than 5dB) can be  

discarded from signal fusion. 

From the performance of the algorithm, Signal fusion center should be considered a critical 

step in designing a WSN.the reason is that information signal fusion can be used to extend 

the network lifetime, the signal fusion center employed in the design of the algorithm deals 

with multi dimensional signal from sensors. It can be used in real time applications (Case 

study). 

This research focused on minimizing and optimizing energy consumption based on the 

energy consuming constituents as a general model for WSN deployment. Most of the energy 

is consumed during the sensing, data processing, data storage, and communication phases. 

The algorithm deals with all aspects of energy consumption in all types of WSNs. We believe 

reducing the number of measurements by each sensor, means reduction in the data 

dimensionality of the above mentioned phases, which improve the energy efficiency by 

reducing the energy consumption of the WSNs and will bring green practice to the WSN 

communication system. 

 

5:2.CONCLUSIONS 

From the green perspective, a distributed nonlinear state estimation algorithm with the 

signal fusion center for the WSNs has been developed in this study that utilizes advantages of 

compressive sensing, signal fusion center and the square-root decomposition techniques to 

improve energy efficiency. By embedding the pseudo-measurement technology into the 
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cubature Kalman  filter and corresponding information filter, the authors have derived the 

CIF-PM algorithm and its square-root version by using the QR decomposition. Meanwhile, 

the distributed algorithm DSCIF-PM is developed by means of high-pass consensus filter. 

The developed algorithm can potentially reduce the number of measurements, data storage 

and communication overhead without degrading the reconstruction performance. The 

performance of the algorithm was evaluated by simulations. The results have demonstrated 

that the DSCIF-PM provides satisfactory estimations of sparse signal by using far fewer 

measurements than required traditionally. It corresponds to energy savings in the WSNs 

promising positive contribute to the green 5G. 

5.3. CONTRIBUTION TO THE KNOWLEDGE 

Temporal coverage pose limitation to WSNs, temporal coverage depends on the 

sensor sampling rate, communication delay and the node duty cycle (see the literature 

review).Temporal coverage can be understood as the ability to fulfill a network purpose 

during its life time. Due to redundancy and cooperation properties, WSNs are composed of 

large number of sensors nodes posing scalability challenge caused by a potential collision and 

transmission of redundant data. 

Introduction of signal fusion center in the WSNs communication network algorithm 

played a key role in the reduction of overall communication load in the network by avoiding 

transmission of redundant signals to increase the lifetime of the sensor node. 

5.4. RECOMMENDATIONS FOR FUTURE RESEARCH 

Researchers have discussed sparse state estimation problem within the framework of 

the Kalman filter for linear dynamical system. In nonlinear dynamical case, the studies have 

attempted to discuss the sparse state reconstruction based on nonlinear filter. Nevertheless, 

the distributed sparse state estimation for the nonlinear system has not been adequately 

investigated yet to the best of my knowledge. Therefore further CS reconstruction procedures 
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should to be conducted to see whether we can further reduce the number of sample required. 

The computational complexity of CS/DCS encoding is not significant, but decoding 

complexity (O(n3)) can be. Due to decoding complexity, CS/DCS might not be suitable for 

real-time applications employing large WSNs. Investigation of decoding complexity 

reduction for CS/DCS is a recommended future research direction. Algorithms based multi 

sensor signal fusion in multipath fading communication channel needs further investigations 

5.3.1. Dependent signal fusion exploiting CS. 

Dependent data fusion exploiting CS; Dependence is one of the common 

characteristics exhibited in multiple sensor data. While there exist several recent works that 

exploit dependence in the Bayesian CS framework under restricted assumptions, CS based 

dependent signal fusion especially in the presence of non-Gaussian and the spatio-temporal 

dependence is not well understood. Thus, exploitation of higher order dependence and 

structured properties of high dimensional data in CS based fusion is worth investigating. 

5:5.POLICY RECOMMENDATION. 

Prison is the place that holds and transforms criminals; safety is the first of all to 

quarantee.To protect the safety of society, and to protect personnel and stability of guards and 

detainees. By installing Green energy security monitoring system, it can effectively 

strengthen the management of prisoners and the reduce overall energy cost and create a toxic 

free environment. 

To strengthen security measures and strengthen prison modernization, putting 

forward a kind of prison security system design scheme based on wireless sensor network 

(WSN). ). Kenya government should review the Information, Communication, and 

technology policy to take into consideration emerging technological innovation for growth of 

the Sector, for example Sensor Network. The government, require to formulate policies to 
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address deployment of sensors, privacy of the information to individual and institution that 

are not captured in the current policy documents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 
 

REFERENCES 
1. A Jay D, K. s. (2008). Distributed Computing. UK: Cambridge University. 

2. A.Dubenndorf, V. (2003). Wireless data Technologies Reference Handbook. Newyork: John 

Wiley. 

3. A.Howard, M. G. (2002). Mobile Sensor Network Deployment using potential Fields. 

Fukuoka: DARS 02. 

4. A.Y.carmi, L. D. (2012). Unscented compressed sensing. Proceeding of the IEEE 

International Conference on Acoustics,speech,and Signal processing (ICASSP) , 5249-5252. 

5. Anastasi G, C. M. (2009). Energy Conservation in Wireless sensor Network:A survey. AD 

Hoc Network , 537-568. 

6. B.Hassibi, R. a. (2013). The Kalman-like particle filter:optimal estimation with quantized 

innovation/measurement. IEEE Transanction of signal processing , Vol.61, 131-136. 

7. Beate, A. B. (2009). Interviewing Experts. UK: Palgrave Macmillan. 

8. cannor, M. C. (2013). Writing Scientific Research Article Strategy and Steps. canada: John 

Wiley. 

9. Christian, p. (2010). Fundamental of wireless sensor Networks. United Kingdom: John 

wiley. 

10. Co.Ltd, H. T. (2013). 5G communication A technology vision. China: Shenzhen. 

11. D.Greenberg, m. (1998). Advanced Engineering Mathematics. New jersey: Prentice Hall. 

12. D.Kanevsky, A. B. (Jul 2010). Kalman filtering for compressed sensing. Fusion, (p. In 

proceding ). 

13. D.Simon. (2010). Kalman filtering with state constraints:A survey of linear and nonlinear 

algorithms. IET control theory applications , 1303-1318. 

14. Donoho, D. L. (2006). Compressed sensing. IEEE Transanction on information theory. 

15. Espineira, F. F. (2010). Modelling the wireless Propagation Channel Simulation Approach 

with Matlab. New york: A John wiley and sons. 

16. Fancart, H. R. (2010). Mathematical introduction to compressive sensing. New york: 

Springer New york. 

17. Feg Zhao, L. J. (2009). An Information Processing Approach. Londan: Morgan Kaufman. 

18. Feng, Z. Z. (April 2016). A sparse signal Reconstruction Algorithm in wireless sensor 

networks. Hindawi publishing corporation Mathematical problem in Engineering . 

19. Francisco, S. (2006). Introduction to data compression. San framcisco: Morgan Kaufmann. 

20. G.Pope. (2008). Compressive sensing. In A summary of reconctruction Algorithm. 

Switzerland. 



70 
 

21. G.Yang, V. a. (Sept 2013). Wireless comoressing sensing for energy harvesting sensor 

nodes. IEEE Transmission signal Process , Vol 61 (No 18), 4491-4505. 

22. Goldsmith, A. (2005). Wireless communication. United Kingdom: Gambridge university. 

23. H.Ohlsson, M. S. (2013). Nonlinear compressive particle filtering. proceeding 52nd ,IEEE 

conference Decision Control , 7054-7059. 

24. H.Rosen, K. (2012). Discret Mathematics and its application. New york: McGrall Hills. 

25. J, E. a. (2007). Sparsity and incoherence in Compressive Sampling. 969-985. 

26. J.Hill, R. K. (2000). System architecture Direction for Networked Sensors. USA: Cambridge. 

27. J.Tobians, M. (2011). Matrices In Engineering Problems. USA: Morgan & Claypool 

Publishers. 

28. K.Chatumedi, D. (2010). modelling and Simulation of system using MATLAB. Newyork: 

CRC Press. 

29. K.Moon, T. (2000). Mathematical Methods and Algorithms. UK: Pretice Hall. 

30. K.P.B.Chandra, D. a. (2013). Square root cubature information filter. IEEE sensor Journal , 

Vol.13 (No2), 750-758. 

31. Kalin, H. M. (1998). An Introduction to Stochastic Modelling. London: Academic press. 

32. Kothari, C. (2004). Research Methodology Methods and technique. India: New age 

International. 

33. Kumar, I. J. (2001). Signal and systems. india: Tata McGral-Hill Publishing Limited. 

34. Kumar, R. (2005). Research Methodology:Step -by-step quide for beginners. London: Sage. 

35. M.B.Wakin, E. j. (2008). An Introduction to Compressive sampling. IEEE Signal processing 

magazine. 

36. Michel C.Jeruchin, P. b. (2000). Simulation of communication 

Systems,Modeling,Methodology and Technoque. New york: Kluwer Academic Publisher. 

37. Mohinder S.Grewal, A. P. (2008). Kalman Fitering,Theory and practice using Matlab. 

Canada : John wiley & Sons. 

38. M-Ross, S. (2010). Introduction to probality Model. london: Academic Press. 

39. P.Zheltov, V. a. (2011). On performance of greedy algorithm. Journal of Approximation 

Theory , 1134-1145. 

40. Rappaport, T. a. (2005). Wireless Communication principle and Practice. Newyork: Prentice 

Hall. 

41. Rodrique, J. (2015). Fundemental of 5G Mobile Network. UK: Wiley. 

42. Simon, H. (2000). Communication Systems. New york: John Wiley & Sons. 



71 
 

43. Simon, H. (2007). Digital communication. Haryana: Sanat printers. 

44. Sklar, B. (2010). Digital communication,Fundanmental and Application. New Jersey: 

Prentice Hall. 

45. T.Blumensath. (2013). Compressed sensing with nonlinear observartion and related 

nonlinear optimization problem. IEEE Transanction on Information Theory , 3466-3474. 

46. T.chen, Y. K. (2011). Network energy savingh technologies for wireless access network. 

IEEE wireless Communiocation , Vol 8 (No 5), 30-38. 

47. T.Karris, S. (2006). Introduction to Simulink with Engineering Applications. United states: 

Orchard Publisher. 

48. Theodore S Rappat, K. L. (2004). Principle of Communication system simulation with 

wireless Application. New Jersey: Prentice Hall. 

49. Velten, P. k. (2006). Mathematical Modelling and Simulation. USA: Wiley-VCH. 

50. Vijay K, M. B. (1999). Digital signal Processing. Uk: AP. 

51. Viola, S. a. (2007). On Kalman filtering with nonlinear equality constraints. IEEE 

Transmission signal process , 2774-2774. 

52. Vuran, I. F. (2010). Wireless sensor Network. USA: John wiley. 

53. Y.C.Eldar, A. a. (2013). Sparsity constrained nonlinear optimization:optimality condition 

and algorithm. SIAM Journal on Optimization , 1480-1509. 

54. Y.Liu, H. J. (2014). Distributed kalman-consesus filtering for sparse signal estimation. 

Mathematical problem in enineering , 7 pages. 

55. Y.Zhou, D. Y. (2014). Energy-efficient target tracking in wireless sensor networks. 

International journal of distributed sensor networks , Vol,2014, 10 pages. 

56. Z.Zhang, y. D. (2015). A survey of sparse representation:algorithm and applications. IEEE 

Access , 490-530. 

57. Zhi Zhao, J. P. (May 2016). A Green Distributed signal Reconstruction in wireless sensor 

networks. Green communication and Networking for 5G wireless . 

 

 

 

 

 

 



72 
 

APPENDICES 

APPENDIX A: MODEL THEORY 

To each symbol f  is associated a number  𝑃(𝑃) ∈ ℕ>0 ,and to each relation symbol R a 

number  𝑃(𝑃) ∈ 𝑃.(arities of the function f, resp, the relation R) 

We fix a language  𝑃 = {𝑃𝑃, 𝑃𝑃𝑃𝑃| 𝑃 ∈ 𝑃, 𝑃 ∈ 𝑃, 𝑃 ∈ 𝑃}, Where the 𝑃𝑃 function 

symbols, the 𝑃𝑃 are relation symbols, and the 𝑃𝑃 are constant symbols 

The structure 𝑃 is the denoted by 

𝑃 = (𝑃, 𝑃𝑃
𝑃, 𝑃𝑃

𝑃, 𝑃𝑃
𝑃|𝑃 ∈ 𝑃, 𝑃 ∈ 𝑃) 

 L-structures. We fix a language L = {fi, Rj , ck | i ∈  I, j ∈  J, k ∈  K}, where the fi’s are 

function symbols, the Rj ’s are relation symbols, and the ck’s are constant symbols. 
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APPENDIX B: THE KALMAN FILTER 

Nonlinear  Approximation Error. 

The extended Kalman filters generally has better robustness because it uses linear 

approximation over smaller ranges of state trajectory perturbation plus state estimation 

errors,wheres the extended Kalman filters assumes linearity only over the range of state 

estimation errors. The expected squared magnitudes of these two ranges can be analyzed by 

comparing the solutions of the two equations. 

𝑃𝑃+1 = 𝑃𝑃
[1]

𝑃𝑃𝑃𝑃
[1]𝑃 + 𝑃𝑃 

𝑃𝑃+1 = 𝑃𝑃
[1]{𝑃𝑃 − 𝑃𝑃𝑃𝑃

𝑃[𝑃𝑃𝑃𝑃𝑃𝑃
𝑃 + 𝑃𝑃]−1𝑃𝑃𝑃𝑃}𝑃𝑃

[1]𝑃 + 𝑃𝑃 

 

The first of these is the equation for the covariance of trajectory perturbation, and the second 

is the equation for the priori covariance of state estimation errors. The solution of the second 

equation provides an idea of the ranges over which the extended Kalman filters uses linear 

approximation. The sum of the solutions of the two equations provides an idea of the ranges 

over which the linearized filters assumes linearity. The non linear approximation error can be 

computed as function of perturbation (for linearized filtering) or estimation errors (for 

extended filtering) 𝑃𝑃 by the formulas 

𝑃𝑃 = 𝑃(𝑃 + 𝑃𝑃) − 𝑃(𝑃) −
𝑃𝑃

𝑃𝑃
𝑃𝑃 

𝑃𝑃 = 𝑃̅  (ℎ(𝑃 + 𝑃𝑃) − ℎ(𝑃) −
𝑃ℎ

𝑃𝑃
𝑃𝑃) 

Where 𝑃𝑃the error in the temporal is update of the estimated state variable due to 

nonlinearity of the dynamics and 𝑃𝑃 is the error in the observational update of the estimated 

state variable due to nonlinearity of the measurement. As a rule of the thumb for practical 

purposes, the magnitude of these errors should be dominated by the RMS estimation 

uncertainties. That is |𝑃|2 ≪ trace P for the ranges of 𝑃𝑃 expected in implementation 

 

Mean squared error. 

Many signals can be described in the following way; 

𝑃𝑃 = 𝑃𝑃𝑃𝑃 + 𝑃𝑃 

Where; 𝑃𝑃 is the time dependent observed signal, 𝑃𝑃is the gain term, 𝑃𝑃 is the information 

bearing signal and 𝑃𝑃 is the additive noise 

The overall objective is to estimate𝑃𝑃. The difference between the estimate of 𝑃̂𝑃 and 𝑃𝑃 

itself is termed the error; 
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𝑃(𝑃𝑃) = 𝑃(𝑃𝑃 − 𝑃̂𝑃) 

The particular shape of 𝑃(𝑃𝑃) is dependent upon the application, however it is clear that the 

function should be both positive and increase monotonically. An error function which 

exhibits these characteristics is the squared error function. An error function which exhibits 

these characteristics is the squared error function; 

𝑃(𝑃𝑃) = (𝑃𝑃 − 𝑃̂𝑃)2 

Since it is necessary to consider the ability of the filter to predict many data over a period of 

time a more meaniful metric is the expected value of the error function; 

𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃(𝑃(𝑃𝑃)) 

This result in the mean squared error (MSE) function 

𝑃(𝑃) = 𝑃(𝑃𝑃
2 ) 
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